Unmasking alpha diversity, cladogenesis and biogeographical patterning in an ancient panarthropod lineage (Onychophora: Peripatopsidae: Opisthopatus cinctipes) with the description of five novel species

Savel R. Daniels*a,*, Charlene Dambirea, Sebastian Klausb and Prashant P. Sharmaa

aDepartment of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa; bDepartment of Ecology and Evolution, J. W. Goethe-University, Biologicum, D-60435 Frankfurt am Main, Germany; cDepartment of Zoology, University of Wisconsin-Madison, Madison, WI 53706, USA

Accepted 27 January 2016

Abstract

Speciation and biogeographical patterning in the velvet worm Opisthopatus cinctipes was examined under a null hypothesis that numerous discrete lineages are nested within the species. A total of 184 O. cinctipes specimens, together with a single specimen of each of the two congeneric point endemic sister species (O. roseus and O. herbertorum), were collected throughout the forest archipelago in the Eastern Cape, KwaZulu-Natal and Mpumalanga provinces of South Africa. All specimens were sequenced for two partial mitochondrial DNA loci (COI and 12S rRNA), while a single specimen from each locality was sequenced for the nuclear 18S rRNA locus. Evolutionary relationships were assessed using maximum-likelihood and Bayesian inferences, while divergence time estimations were conducted using BEAST. A Bayesian species delimitation approach was undertaken to explore the number of possible novel lineages nested within Opisthopatus, while population genetic structure was examined for the COI locus using ARLEQUIN. Phylogenetic results revealed that O. cinctipes is a species complex comprising seven geographically discrete and statistically well-supported clades. An independent statistical approach to species delimitations circumscribed ca. 67 species. Results from divergence time estimation and rate constancy tests revealed near constant net diversification occurring throughout the Eocene and Oligocene with subdivision of ranges during the Miocene. Gross morphological characters such as leg pair number within O. cinctipes were invariant, while dorsal and ventral integument colour was highly polymorphic. However, scanning electron microscopy revealed considerable differences both between and within clades. The caveats associated with both morphological and algorithmic delineation of species boundaries are discussed. The five novel Opisthopatus species are described.

Delineating operational taxonomic units (OTUs) is a critical component of biology that impacts virtually every sphere of study, ranging from ecology and physiology to conservation. What operational criteria should be utilized to define species is a highly contentious matter, as numerous species concepts exist that require different criteria to be satisfied before a species can be considered a valid operation taxonomic unit (Sites and Marshall, 2003; Agapow et al., 2004; Bond and Stockman, 2008). Most taxonomists would concur that multisource data derived from independent character classes offer the best evidence for the diagnoses of novel species. However, a combined integrative systematic approach may often yield conflicting evolutionary outcomes, particularly in instances where character incongruence exists, impairing the ability of taxonomists to weigh objectively the limits of defined species. In instances where cryptic speciation has been detected the problem of effective species diagnosis...
becomes more problematic due to incongruence present between traditional morphological and molecular characters. Evolutionary inferences derived from DNA sequences [particularly the mitochondrial cytochrome \(c \) oxidase subunit 1 (COI) data and to a lesser extent nuclear loci] are widely used to describe alpha diversity and identify cryptic species, and have gained recent momentum (albeit with considerable criticism) due to the advocacy of the “Barcoding of Life” initiative (Hebert et al., 2003a,b, 2004a,b; de Salle et al., 2005; Hickerson et al., 2006). Cryptic speciation has been discovered in several eumetazoan lineages (Hedin and Wood, 2002; Baker et al., 2004; Boyer et al., 2007; Daniels et al., 2009; Daniels, 2011a, 2011b; McDonald and Daniels, 2012; Engelbrecht et al., 2013; Fernández and Giribet, 2014; Medina et al., 2014). Molecular systematic studies of cryptic species have revealed substantial hidden diversity and localized endemism, negating the traditional paradigm of species with cosmopolitan distributions and forcing a rethink of units for conservation priority (Bickford et al., 2006). One of the conundrums of cryptic speciation is how to delineate the lineages because they frequently exhibit deep genetic differentiation with limited morphological differentiation. Recent advances in this regard include multilocus coalescent-based methods and Bayesian inference approaches to species delimitation, offering an algorithmic solution to delineating species boundaries in cryptic complexes (Leaché and Fujita, 2010; Yang and Rannala, 2010; Zhang et al., 2011; Medina et al., 2014), although there are notable problems with this methodological approach (Zhang et al., 2011). The analysis of data derived from independent data sets, including gross morphology, microscopic ultrastructure, and nuclear and mitochondrial genome sequencing, is anticipated to facilitate identification of concrete targets for constructing meaningful species diagnoses, even where cryptic diversity is present (Edgecombe and Giribet, 2008).

Phylogenetically early branching, ancient lineages characterized by obligatory microclimatic specialization and low dispersal capabilities are ideal candidate taxa to explore cryptic speciation mechanisms as these taxa will exhibit marked spatio-temporal structure. Onychophora, commonly referred to as velvet worms, represent such a relictual Pangean panarthropod clade that is exclusively terrestrial and typically confined to indigenous forested areas, where they occur in saxoplycic environments such as decaying logs and leaf litter, in which microclimate is stable (Murienne et al., 2014). Velvet worm species have historically been characterized by remarkable stasis in morphology, rendering the taxonomy of the group, particularly at the species level, largely unstable. The dubious taxonomy of velvet worm species has been compounded by a history of exclusive reliance on highly variable morphological characters (Reid, 1996). Where velvet worms have recently been subjected to molecular DNA sequencing endeavours in combination with scanning electron microscopy (SEM), pronounced alpha diversity has been unmasked (Trewick, 2000; Daniels et al., 2009, 2013; Oliveira et al., 2011, 2012a; McDonald and Daniels, 2012; Ruhberg and Daniels, 2013). These studies have demonstrated that the existing taxonomy is largely inaccurate, and has severely underestimated alpha diversity, thus highlighting the need for closer systematic scrutiny.

In South Africa two velvet worm genera (Peripatopsis and Opisthopatus) are present that historically contained eight and three described species, respectively (Hamer et al., 1997; Ruhberg and Hamer, 2005). Recent modern systematic studies resulted in a twofold increase in species diversity within Peripatopsis (Daniels et al., 2009, 2013; McDonald et al., 2012; Ruhberg and Daniels, 2013), with several new species awaiting formal description (S. R. Daniels, unpubl. data). Many of the novel discovered species were nested within three geographically widespread species complexes (the \(P. \) capensis, \(P. \) moseleyi and \(P. \) balfouri species complexes; McDonald et al., 2012; Daniels et al., 2013; Ruhberg and Daniels, 2013). Results from these studies indicate high levels of localized endemism, accentuating the need for the conservation of the fauna and its forest habitat. In contrast, no molecular systematic study has been undertaken on Opisthopatus. Of the three described \(Opisthopatus \) species, two (\(O. \) herbertorum and \(O. \) roseus) are point endemics, whereas the third (\(O. \) cinctipes) is unique among South African velvet worms in that it has an extensive and discontinuous distribution (Hamer et al., 1997; Ruhberg and Hamer, 2005). The forested areas where \(O. \) cinctipes has been recorded are isolated and fragmented along the eastern and southern margins of South Africa and cover \(< 0.5\% \) of the total land surface in the country (White, 1981; Mucina and Rutherford, 2006). Allopatric populations of \(O. \) cinctipes occur from the coastal margins and adjacent interior of the eastern portions of the Eastern Cape into Kwa-Zulu-Natal province, along the Drakensberg Mountain escarpment into Swaziland and the Mpumalanga province in north-east South Africa (Hamer et al., 1997). Within its distribution range the species is confined to isolated forest patches from sea level to high-altitude mountains and is distributed in temperate and tropical biomes that are bisected by several dry corridors, large rivers and grasslands. The species is present in two major forest types, the Afrotemperate and Indian Ocean Coastal Belt (IOCB) forests. Afrotemperate forests are discontinuous, restricted to high altitudes in the interior, and are separated from each neighbouring forest by dry lowland barriers (Mucina and Rutherford, 2006). Afrotemperate forests are intolerant of fire
regimes, and are limited in size by the frequency of fires in the surrounding fynbos (a Mediterranean heathland), grasslands and savanna biomes, hence they are generally small and located in deep gorges (Mucina and Rutherford, 2006). These forests are referred to as the Afrotemperate archipelago due to their small sizes and discontinuous distribution. IOCB forests occur along the coastal margins of the Eastern Cape and KwaZulu-Natal in South Africa and represent a young habitat type because these areas were historically inundated during episodic marine transgressions. Forest patches have undergone significant contraction and expansions in response to climatic oscillations, rainfall and fire regimes (Hamilton, 1981; White, 1981; Taylor and Hamilton, 1994; McDonald and Daniels, 2012). Climatologically, South Africa has experienced several intense mesic and xeric cycles that directly impacted terrestrial biomes, including forested areas. During the early Miocene the region was characterized by widespread temperate forested habitat, and high levels of precipitation. However, the development of the proto-Benguela current along the west coast resulted in increased aridification and the contraction of forested regions to higher elevations (White, 1978; Lawes, 1990). Consequently, during the late Miocene marked aridification was present that continued into the Pliocene ameliorations that have resulted in allopatric genetic episodes in this species complex occurred during the Miocene in response to progressive climatic ameliorations and the progressive aridification that drove the contraction of the Afrotemperate forest biome in South Africa. As a corollary, we hypothesize that Afrotemperate forests in the interior of the country would harbour older lineages than populations from the IOCB. Thirdly, in contrast to the invariability of traditional gross morphological characters, we hypothesized that ultrastructural characters (i.e. pertaining to dermal papillae) would reveal diagnostic differences corresponding to genetic clades. Through this focus on Onychophora, we underline the complexities of delineating species boundaries in cases of morphologically ancient invertebrate taxa.

Materials and methods

Taxon sampling

A total of 184 Opisthopatus cinctipes specimens were collected from 47 localities throughout its distribution in the Eastern Cape, KwaZulu-Natal and Mpumalanga provinces of South Africa from 2006 to 2012 (Fig. 1; Table 1) (Hamer et al., 1997). In addition, a single specimen of each of the two point endemic species, O. herbertorum and O. roseus, was collected from Mount Currie and Ngele Nature Reserves, respectively. Specimens of Opisthopatus were hand-collected from saproxylic environments (beneath or inside decaying logs, leaf litter or under moss close to waterfalls or streams), in closed-canopy forest areas. Locality coordinates were recorded using a handheld GPS (Garmin-Trek Summit). We aimed to collect a minimum of five specimens per locality to document the genetic diversity per sample site. However, at some sample localities this was not possible as velvet worms are notoriously difficult to collect and frequently occur in low numbers, as is typical of the phylum Onychophora (S. R. Daniels, pers. observ.). Samples were placed in honey jars and killed by freezing, preserved in absolute ethanol and stored at 4 °C in a refrigerator. Specimens have been deposited in the collection of the South African Museum of Natural History (SAM-ENW-C) (Iziko Museum of Cape Town), South Africa. The two previously described subspecies (O. c. laevis and O. c. natalensis) are not recognized, in line with the two studies by Ruhberg (1985) and Hamer et al. (1997), despite Oliveira et al. (2012b) recently elevating them to species without formal examination, description or comparison with the three described Opisthopatus species.

Outgroup selection

Recent phylogenetic results have demonstrated that the two velvet worm families (Peripatidae and Peripatopsidae) are both monophyletic (Murienne et al., 2014). Both the South African velvet worm genera (Peripatopsis and Opisthopatus) have been recovered as monophyletic, but are not sister taxa, as they form sister groupings with the two Chilean velvet worm genera (Metaperipatus and Paropisthopatus) (Daniels et al., 2009; Allwood et al., 2010; Murienne et al., 2014). Peripatopsis is thought to be a sister group to Metaperipatus (with low or limited nodal support) while
Opisthopatus is thought to be a sister group to Paropisthopatus (Reid, 1996). Paropisthopatus has not been collected in recent years and was unavailable as an outgroup in the present study. As a conservative measure, we thus used 14 outgroup species from the family Peripatopsidae, including two Chilean species (Metaperipatus blainvillei and M. inae) and 12 Australian species representing four genera. The latter species were also used by Daniels et al. (2009).

DNA extraction, PCR and sequencing

Tissue biopsies were performed on the ventral surface of Opisthopatus specimens and subjected to DNA extraction using either a Qiagen DNeasy or a Macherey-Nagel kit, following the manufacturers' protocols. Extracted DNA was stored at 4 °C until required for PCR. Prior to use, a dilution of 1 µL DNA in 20 µL was made with deionized water. Two mitochondrial DNA loci, COI and 12S rRNA, were selected for their relatively high mutational rates and established utility for reconstructing evolutionary relationships among a variety of panarthropod groups including Onychophora (Trewick, 2000; Daniels et al., 2009, 2013; Daniels and Ruhberg, 2010; McDonald and Daniels, 2012; Murienne et al., 2014; Myburgh and Daniels, 2015). Because mitochondrial genes constitute a single linked locus, the inclusion of nuclear markers is thus critical in avoiding bias in tree topology estimation and inferences of species boundaries. Hence, in addition to the mtDNA data, several nuclear DNA sequence markers used for the Australian velvet worms were tested. These included the primer pairs for the FTz intron (Rockman et al.,...
The latter marker has been successfully used in phylogenetic and phylogeographical studies of South African velvet worms (Daniels et al., 2009; McDonald and Daniels, 2012; Myburgh and Daniels, 2015).

For each PCR a 25-μL reaction was performed that contained 14.9 μL of molecular-grade H₂O, 3 μL of 25 mm MgCl₂, 2.5 μL of 10 × Mg²⁺-free buffer, 0.5 μL of 10 mm dNTPs, 0.5 μL of each oligonucleotide primer set at 10 mm, 0.1 unit of Taq polymerase.
and 2 µL of template DNA. The PCR temperature regime for all the gene fragments was 94 °C for 4 min, 94 °C for 30 s, 48 °C for 35 s and 72 °C for 30 s and a final extension step at 72 °C for 10 min. Primer pairs for the respective gene regions were as follows: LCO1-1490 and HCO1-2198 (Folmer et al., 1994) for a partial fragment of the COI locus; 12Sai and 12Smbi (Kocher et al., 1989) for a partial fragment of the 12S rRNA locus; and 18S 5F and 18S 7R (Giribet et al., 1996) for a partial fragment of the 18S rRNA locus.

PCR products were electrophoresed on a 1% agarose gel containing ethidium bromide for 2–3 h at 90 V and products were visualized under UV light. The gel bands of DNA were excised and the DNA was extracted and purified using a QIAquick gel extraction kit. Purified PCR products were cycle sequenced using the PRISM Dye Terminator Cycle Sequencing Reaction Kit (Perkin-Elmer) and 3 µL of the fluorescent-dye terminators with an ABI PRISM Dye Terminator Cycle Sequencing Reaction Kit (Perkin-Elmer) and 3 µL of a 10 µm primer solution for each primer pair. Unincorporated dideoxynucleotides were removed by gel filtration using Sephadex G-25 (Sigma-Aldrich, St. Louis, MO, USA).

Phylogenetic analysis

Sequences were checked for base ambiguities in Sequence Navigator (Applied Biosystems, Foster City, CA, USA) and a consensus sequence was created. The protein-encoding COI sequences were manually aligned based on the conceptual peptide translations, which were also checked for stop codons. For 12S rRNA and 18S rRNA, sequences were aligned using MUSCLE v.3.8 (Edgar, 2004). Hypervariable regions that could not be aligned with confidence were excluded from the phylogenetic analyses using GBLOCKS v.0.91b (Castresana, 2000) under default parameters. Evolutionary relationships within Opisthopatus were inferred using Bayesian inference (BI) and maximum-likelihood (ML) approaches. The BI and ML analyses were conducted on both the combined mtDNA (COI+12SrRNA) and the total evidence. Uncorrected pairwise sequence divergence values were calculated for the COI locus using PAUP* v.4.10 (Swofford, 2002).

ML analysis was conducted in RAxML v.7.2.7 (Stamatakis, 2006). Heuristic searches were conducted under mixed models of sequence evolution, which allows individual model parameters of nucleotide substitution to be estimated independently for each analysis. A unique GTR+Γ model was implemented for each partition during the thorough ML tree search while CAT approximation was used during the assessment of nodal support with 1000 rapid bootstrap replicates (Felsenstein, 1985; Stamatakis, 2006). Nodal support was estimated using bootstrap resampling (1000 pseudo-replicates). Bootstrap values of < 75% were regarded as indicating poor support and those of > 75% as good support.

BI was conducted using MrBayes 3.0b4 (Ronquist and Huelsenbeck, 2003) for the large COI and 12S rRNA data set as well as the reduced total evidence dataset. jModelTest v.2 (Darriba et al., 2012) was used to obtain the best-fit substitution model for each locus for the partitioned Bayesian analysis. The best-fit ML score was chosen using the Akaike information criterion (AIC) (Akaike, 1974) as this has been demonstrated to reduce the number of parameters that contribute little to describing the data by penalizing more complex models (Nylander et al., 2004). The substitution models calculated using jModelTest v.2 were used for the partitioned analysis of the combined COI and 12S rRNA. For each Bayesian analysis, ten Monte Carlo Markov chains were run, with each chain starting from a random tree and 5 million generations generated, sampling from the chain every 1000th tree. This was done for combined mtDNA data (COI+12S rRNA) for all samples. This was repeated for the combined analyses, and the substitution models were recalculated, as we used a single specimen from each sample locality. A 50% majority rule consensus tree was generated from the trees retained (after the burn-in trees were discarded), with posterior probabilities for each node estimated by the percentage of time the node was recovered. Posterior probabilities (pP) of < 0.95 were regarded as not supported. Runs were repeated four times to ensure accurate topological convergence. We sought lineages within Opisthopatus that were recovered with high nodal support and were insensitive to algorithmic treatment as candidates for evaluating novel species boundaries. A similar approach was recently followed by Bull et al. (2013) for the widely distributed velvet worm Euperipatoides rowelli in the Tallaganda region of south-eastern Australia.

Population genetic structure analysis using COI

Population genetic structure analyses were performed on the COI data set for all the O. cinctipes sample localities (and excluded the single specimens of both O. roseus and O. herbertorum). The COI locus is the most rapidly evolving marker used in the present study and hence best capable of detecting population genetic structure as inferred by standard diversity indices, including number of haplotypes (Nh), haplotypic diversity (h), nucleotide diversity (π) and number of polymorphic sites (Np), while Fu’s Fs (Fu, 1997) was used to determine the history of demographic stability within population. Fu’s Fs with P < 0.02 were considered statistically meaningful. All these calculations were undertaken in ARLEQUIN v.3.01 (Schneider et al., 2000). In addition, pairwise FST among
populations were also calculated. Their significance was calculated by performing 10 000 permutations of the dataset.

DNA barcoding analyses using COI

The COI locus is the barcoding marker of choice. Typically, sequence divergences of known species are compared and values above a certain percentage are taken as indicative of cryptic differentiation. However, there is often an overlap between intra- and interspecific COI sequence divergence values—the barcoding gap. In addition, substantial geographical coverage of the species distribution is required, coupled with the inclusion of all the described species, in an attempt to differentiate conspecific groups from cryptic lineages. While the COI locus has been widely used in Onychophora, the ability of this marker to delineate velvet worm species and identify cryptic lineages exclusively remains largely uncorroborated. A measure of sequence divergence (uncorrected ”P” values) derived from the COI data was therefore used to examine intra- and interspecific differences. We used values > 10% to recognize putative novel lineages based on our preliminary data analyses.

Divergence time estimation

No fossil velvet worms are known from the southern hemisphere Peripatopsidae. In addition, there is considerable ambiguity about the timing of separation of South Africa and Chile (Eagles, 2007; Torsvik et al., 2009). Furthermore, despite recent support for persistence of Peripatopsidae since the Jurassic (Murielie et al., 2014), the non-sister relationship of the two South African genera renders the application of an external biogeographical calibration point in our dataset problematic. Thus, we employed estimated mutation rates of these two partial mtDNA gene fragments, based on a range of mitochondrial mutation rates for the panarthropod taxa as approximations for velvet worm counterparts. For 12S rRNA, a mutation rate of 1%/Myr was used (implemented as a normally distributed prior density with a 95% interval of 0.6–1.4%/Myr) based on brachyuran that like velvet worms constitute a panarthropod lineage whose crown group diversified in the Devonian (Schubart et al., 1998; Klaus et al., 2010). Similarly, for the COI locus a mean mutation rate of 2.0%/Myr was assumed with a 95% interval of 1.4–2.6%/Myr, covering a wide range of published panarthropod rates (Knowlton and Weigt, 1998; Schubart et al., 1998; Projecto-Garcia et al., 2010). This approach results in large credibility intervals, but taking the large uncertainty of molecular clock calibration into account was considered a necessary and conservative workaround to the dubious practice of biogeographically based calibration. For the nuclear 18S rRNA gene we assumed a very broad uniform prior for the substitution rate between 0% and 2%/Myr.

Divergence time estimation was conducted using a lognormal uncorrelated relaxed clock model in BEAST v.1.7.5 (Drummond et al., 2012) for each of the two datasets. First, we used a 190-taxon mtDNA (COI + 12S rRNA) dataset consisting only of Opisthopatus exemplars and rooted with the two Metaperipatus, and second, we used a 51-taxon three-locus data set (all genes) retaining only Opisthopatus exemplars and rooted with the two Metaperipatus. We applied a Yule tree prior and GTR+Γ substitution models to all partitions, with COI additionally partitioned into two sets (1st and 2nd codon sites under one model; 3rd codon sites under another). For both data sets, two chains of 50 million generations were run, with sampling every 5000 chains. Stationary and effective sampling size (ESS) of parameters were investigated in Tracer v.1.6 (Rambaut et al., 2013); the initial 20% of samples was discarded as burnin, and sufficient ESS values > 200 were obtained for all parameters.

Tests of diversification rate constancy

To examine whether net diversification rates have remained constant during the evolutionary history of Opisthopatus, we examined log lineage through time plots for chronograms of the total evidence dataset after culling the Metaperipatus outgroups, using the R package LASER (Rabosky, 2006). Tests for rate constancy were implemented using the ΔAIC test statistic and six models: one-rate Yule, two-rate Yule, three-rate Yule, birth-death, density-dependent logarithmic and density-dependent exponential.

Species delimitation using Bayesian GMYC

A Bayesian implementation of the generalized mixed Yule-coalescent model (GMYC) was used to infer species limits for the mitochondrial dataset, using the R package bGMYC (Reid and Carstens, 2012). To account for error in phylogenetic estimation, 200 post-burnin trees were randomly selected for analysis. To provide reliable benchmarks, all outgroups were culled except for the two Metaperipatus species, whose systematic validity is well established. A Markov chain was run for 100 000 generations and 50 000 generations were discarded as burnin, sampling the chain every 1000th generation. A uniform prior for the number of species was applied, with a lower bound of three (the two Metaperipatus species and the focal genus Opisthopatus) and an upper bound of 190 (the total number of terminals in the analysis). Convergence was assessed visually by examining the
performance of the chain. The “check rates” function was used to determine the rate of branching of the coalescent model to that of the Yule model.

Morphological character examination

A digital camera was used to capture images of live specimens to demonstrate their colour variation. Where possible, at least one male specimen per locality was used for gross morphological analysis and SEM. A stereomicroscope was used to observe the following gross morphological characters: number of leg pairs, dominant dorsal and ventral integument colour, distinct dorsal pattern and the presence of any unique head structures. Dorsal and ventral integument colour, tinct dorsal pattern and the presence of any unique

dissert morphological characters: number of leg pairs, dominant dorsal and ventral integument colour, distinct dorsal pattern and the presence of any unique head structures. Dorsal and ventral integument colour shows a clear ontogenetic trajectory (S. R. Daniels, pers. observ.), and hence only specimens > 1 cm in length were used in the colour analyses. Images of the dorsal and ventral integument of selected male specimens (including a colour chart as standard) were captured with a Leica DFC320 digital camera, attached to a Leica MZ 7.5 stereomicroscope, and edited using the Leica Application Suite software. These images were used to investigate differences in the integument between the different genetic clades.

As our primary objective was to investigate the genetic variation within *Opisthopatus* we preserved our specimens in absolute ethanol. Cognizance should be taken that specimens preserved in absolute ethanol will generally yield a suboptimal image due to tissue shrinkage, as dehydration renders specimens brittle and easily damaged (Ruhberg and Daniels, 2013). A single male specimen representing each sample locality was dissected into two sections that included the anterior (head) and the posterior (with genitalia) sections. Prior to imaging, the samples were critical-point dried, mounted in carbon cement and sputter-coated with a thin layer of gold. SEM was undertaken at the Central Analytical Facility in the Department of Geology at the University of Stellenbosch using a Leo 1430VP scanning electron microscope. Beam conditions during surface analysis were 7 kV and approximately 1.5 nA, with a working distance of 13 mm and a spot size of 150. During the present study, we focused specifically on the dorsal and ventral integument structure, because these characters have been shown to be useful in delineating cryptic species boundaries in velvet worms (McDonald et al., 2012; Oliveira et al., 2012b; Daniels et al., 2013; Ruhberg and Daniels, 2013). We examined the scale ranks and shape of the dorsal integumentary primary dermal papillae. In addition, using a digital caliper we measured (in mm) two standard dimensions: total length (TL) from the anterior most point of the head to the posterior end of the body and the diameter of the body (DB) in line with oncopod 10 (Reid, 1996). These two measures have been used in the description of novel velvet worm species (Ruhberg and Daniels, 2013).

Results

Combined mtDNA topology (COI + 12S rRNA)

The COI and 12S rRNA fragments comprised 610 and 281 bp, respectively. Sequences were deposited in GenBank (COI accession numbers KR906983–KR907172; 12S rRNA accession numbers KR906793–KR906982). For the COI locus, a TVM+I+Γ (−lnL = 1147.16) model was selected. For the 12S rRNA locus, an HKY (Hasegawa et al., 1985)+I+Γ (−lnL = 4845.39) model was selected. The BI and ML analyses retrieved nearly identical tree topologies, and hence only the ML tree is shown (Fig. 2). The combined mtDNA topology retrieved a monophyletic *Opisthopatus*. However, *O. cinctipes* is paraphyletic and a species complex, characterized by multiple genetically distinct clades that exhibits strong geographical structure. Deeper nodal relationships were poorly supported while the terminal nodes were statistically well supported. Specimens from the southern Afrotemperate forests in the Drakensberg Mountains in KwaZulu-Natal province formed a basal clade comprising *O. cinctipes* specimens from Garden Castle sister group to *O. roseus* sister group to *O. herbertorum* Kamberg and Highmoor. The second clade comprised *O. cinctipes* specimens from Graaff-Reinet sister group (albeit with no statistical support) to one clade of specimens from the Highveld of Mpumalanga and included Gods Window sister group to Bridal Veil, Mount Sheba and Crystal Springs, as well as specimens from Kaapschehoop, Uitsoek, Buffels and Nelshoogte. The third clade comprised *O. cinctipes* specimens exclusively from the Eastern Cape province, with Kleine-monde sister group to Suurberg and the latter clade sister group to Kap river, Alexandria forest, Rivendell, Grahamstown and Katberg. Clade four comprised specimens from Barberton on the Mpumalanga Lowveld as sister group to a clade of *O. cinctipes* specimens from the northern Drakensberg Mountain, Karkloof NR specimens as sister group to Injisuthi NR, Cathedral Peak NR and Monks Cowl NR. Clade five comprised specimens from the north-eastern interior of the Eastern Cape province, with Nocu specimens sister group to Baziyaa and Jenea Valley. The latter clade was sister group to clade six and comprised specimens from the Highveld of the Mpumalanga province, with Mariepskop sister group to Graskop, God’s Window, Bridal Veil and Lone Creek. Clade seven, containing specimens from
Fig. 2. ML tree topology of the *Opisthopatus* species complex based on two mtDNA (*COI* + *12S rRNA*) loci. Numbers above nodes indicate nodal support for bootstrapping and posterior probabilities, respectively. Nodes with 1.00 pP and 100% bootstrap support are marked with an asterisk. The Australian outgroups were removed from the topology. Scale bar = 0.1 changes per position.
Nkandal Forest NR, was basal and sister group to a group of specimens from the IOCB forest, with Ongoya forest sister to Entumeni, Hluhluwe-iMfolozi, Zinkwazi, Pigeon Valley, Krantzkloof, Weza, Ixopo, Umkomaas, Oribi Gorge, Port Edward, Port St Johns and Vernon Crookes.

Total evidence tree (COI + 12S rRNA + 18S rRNA)

For the 18S rRNA locus, a 412-bp fragment was amplified per sample and combined with the mtDNA data to yield a total of 1303 bp. The 18S sequences were deposited in GenBank under accession numbers KR907173–KR907223. The substitution model for the locus was SYM+Γ ($-\ln L = 1574.83$). Analyses of the 18S data set alone (topology not shown) revealed a poorly resolved topology; only two clades were retrieved, namely one clade comprising *O. cinctipes* specimens from the Eastern Cape (referred to as clade 2 in Fig. 3) and a second clade comprising *O. cinctipes* specimens from the KwaZulu-Natal province IOCB forests (referred to as clade 7 in Fig. 3). For both the COI and the 12S rRNA loci the substitution models for the reduced data set were recalculated (results not shown).

Fig. 3. ML tree topology of the *Opisthopatus* species complex based on the total evidence (COI+12S rRNA+18S rRNA) data set. Coloured branches correspond to distinct, geographically cohesive clades. Numbers above nodes indicate nodal support for bootstrapping and posterior probabilities, respectively. Nodes with 1.00 pP and 100% bootstrap support are marked with an asterisk. The Australian outgroups were removed from the topology. Scale bar = 0.05 changes per position.
Both analytical methods (BI and ML) produced nearly identical topologies, and hence only the ML topology is shown (Fig. 3). The combined analyses retrieved a monophyletic *Opisthopatus* while *O. cinctipes* was again retrieved as a paraphyletic species complex. Deeper nodal relationships were poorly supported while terminal nodes had good statistical support (> 0.95 pP/> 75%). Seven statistically well-supported clades were retrieved (Fig. 3). Clade 1 comprised specimens from the southern Drakensberg Mountains in KwaZulu-Natal province with *O. roseus* (Ngele forest) sister group to *O. herbertorum* (Mount Currie) and *O. cinctipes* (Garden Castle NR, Highmoor NR and Kamberg NR). Clade 2 comprised *O. cinctipes* specimens from the Eastern Cape coast and adjacent interior (Kleinemonde River sister to Suurberg with the latter being sister group to Kap River NR, Katberg, Grahamstown, Rivendell and Alexandria Forest). Clade 3 comprised *O. cinctipes* specimens from Nkandla Forest NR sister group to specimens from the Mpumalanga Highveld (God’s Window, Lone Creek, Bridal Veil, Mariepskop and Graskop). Clade 4 comprised *O. cinctipes* specimens from Barberton sister group to specimens from the northern Drakensberg Mountains (Karkloof sister to Royal Natal sister group to Olivierhoek Pass, Ngome forest, Injisuthi, Monks Cowl and Cathedral Peak). Clade 5 comprised the remainder of the *O. cinctipes* specimens from Mpumalanga Highveld (Mount Sheba sister to Crystal Springs with the latter forming the sister group to specimens from Kaapschepoek, Uitsoek, Buffels and Nelshoogte). Clade 6 comprised *O. cinctipes* specimens from the north-eastern interior of the Eastern Cape with Baziya being sister group to specimens from Nocu and Jenca Valley. Clade 7 comprised *O. cinctipes* specimens from Ixopo and Weza sister group to a clade comprised exclusively of specimens from the IOCB forests of KwaZulu-Natal province.

Population genetic structure analysis using COI

The TCS analyses retrieved a total of 119 COI haplotypes for the 184 *O. cinctipes* specimens sequenced. The number of polymorphic sites within sample localities was generally low, with the exception of three sample localities (Bridal Veil, God’s Window and Nkandla) where a high number of polymorphic sites was detected. Due to the large sequence divergences between localities (see Results below) haplotypes could not be connected into a single framework at the 95% confidence level. In addition, no haplotypes were shared between localities, suggesting the absence of maternal gene flow between sample sites. The latter result is corroborated by the large and statistically significantly F_{ST} values between all sample localities indicating marked population differentiation and genetic substructure (result not shown). Among *O. cinctipes* populations, 90.21% of the variation was present between sample sites ($V_a = 41.43$, df = 46, SS = 7725.15, $P < 0.01$), while 9.79% of the variation was present within sample sites ($V_s = 4.49$, df = 139, SS = 624.73, $P < 0.01$). Haplotype diversity (h) was generally high while the nucleotide diversity (π) was low (Table 2). The high h diversity value within localities indicates moderate mutation rates or differential selection pressures, while the low π value within localities can be attributed to small isolated populations with low abundance and gene flow that has undergone severe bottlenecks (Table 2). Fu’s F_s was only statistically significant for the Suurberg sample locality ($P < 0.02$). Ten of the sample sites had negative Fu’s F_s values while the remainder had positive values. Negative values can be attributed to an excess of low-frequency polymorphisms consistent with population expansions or positive directional selection, while positive values indicate an excess of intermediate polymorphisms due to recent population bottlenecks or balancing selection. In our study the negative value is probably the result of population expansions, while the positive values probably reflect population bottlenecks.

DNA barcoding analyses using COI

Uncorrected intraspecific pairwise COI sequence divergence values within *O. cinctipes* sampled localities were generally low and < 1% for 24 sample localities representing 49% of sample sites, < 3% at five sample localities representing 6% of sample sites, < 5% at three sample localities representing 10% of sample sites, < 11% at two sample localities representing 4% of sample sites and > 15% at three sample localities representing 6% of sample sites at Nkandla, God’s Window and Bridal Veil. By contrast, within clades, sequence divergence ranged from 4.91 to 19.01%, with a mean of 12.00%. Between the seven clades the uncorrected sequence divergence ranged from 11.63 to 16.06%, with a mean of 19.27%. As benchmarks, sequence divergence between the two described *Opisthopatus* species (*O. roseus* and *O. herbertorum*) was 12.95%. Divergence between the two Chilean outgroup species *M. blainvillei* and *M. inea* was 13.60%, while the uncorrected sequence divergence within the two Australian outgroup genera ranged from 5.08 to 10.49% among the five *Ooperipatus* species, and from 4.91 to 8.52% among the six *Planipapillus* species.

Divergence time estimates

The divergence time estimates suggest that the *Opisthopatus* species complex originated sometime during the Cretaceous [mean: 111.3 Mya, 95% highest posterior density (HPD): 80.6–153.0 Mya] and diversified during the Late Cretaceous (mean: 87.7 Mya,
95% HPD: 62–118 Mya) (Fig. 4). While the precision of these age estimates is limited, we note that our relaxed molecular clock approach resulted in age ranges that overlap significantly with the HPD intervals obtained by Murienne et al. (2014). Diversification of the seven major clades within the *O. cinctipes* species complex occurred throughout the Palaeocene and Eocene (range 27.0–84.2 Mya). Initial diversification in Clade 1 occurred in the Eocene or early Oligocene (mean: 37.4 Mya, 95% HPD: 26.4–50.9 Mya), a range approximately similar to that for Clade 2. Eocene to Oligocene diversification was estimated in Clade 3 (mean: 37.1 Mya, 95% HPD: 27.05–51.6 Mya). Diversification in the Palaeocene or Eocene was estimated for Clade 4 (mean: 48.4 Mya, 95% HPD: 32.6–68.2 Mya) and Clade 7 (mean: 32.5 Mya, 95% HPD: 23.8–45.2 Mya). Clade 5 was estimated to be between Late Cretaceous and Eocene in age.
55.2 Mya, 95% HPD: 38.6–74.9 Mya). Clade 6 was not supported in the BEAST analyses. Highly similar ages and HPD intervals were recovered with both the mitochondrial and the three-locus datasets.

Rate of net diversification through time

The log lineage through time (LTT) plot based on the three-locus matrix of *Opisthopatus* revealed a fairly linear trajectory (Fig. 5). The best constant rate model selected by LASER was the one-rate Yule model (AIC = 141.8), whereas the best rate variable model (and best model overall) was the two-rate Yule model (AIC = 138.6). However, the shift point computed under the two-rate Yule model occurred 5.34 Mya, after which a five-fold rate decrease was estimated (between 0 and 5.34 Mya), largely an effect of under sampling lineages in the total evidence matrix. For comparison, the
cluster that included both Metaperipatus species, whose systematic validity is not in question. While the results of about ten species may seem more plausible, under this extreme prior distribution the fit of the GMYC model to the data was demonstrably poor, with a mostly negative distribution of log ratio of coalescence branching rate to the Yule model branching rate.

Morphological character examination

Both dorsal and ventral integument colour was highly polymorphic among *O. cinctipes* specimens as well as within each of the seven genetically defined clades (Fig. 7; Table 3). The two morphologically defined species, *O. herbertorum* and *O. roseus*, were always pearl white and rose pink, respectively (Fig. 7a). In *O. cinctipes* specimens the dorsal integument colour varied remarkably, ranging from rose pink to blue black, with an arrangement of brown and black being the most common morphotype (Fig. 7a). Similarly, ventral integument colour among *O. cinctipes* specimens exhibited considerable variation that ranged from pearl white to mottled brown with the ventral organs clearly evident (Fig. 7b, Table 3). All specimens possessed a distinct thin mid-dorsal line that ranged in colour from black to white. Somatic pigments often leached from the specimens following preservation in absolute ethanol, limiting the diagnostic value of colour, particularly in preserved specimens. In certain specimens, a band of orange or white was present immediately posterior to the head, while some specimens were characterized by a lateral orange-brown band along each flank of the body. Colour showed a distinct ontogenetic pattern in *O. cinctipes*. For example, at Mount Sheba juvenile specimens were light creamy pink, while adults were slate black. Leg pair number was a constant 16 for all *O. cinctipes* specimens, while in *O. roseus* and *O. herbertorum* leg pair numbers were 17 and 18, respectively. Leg pair number was invariant in six of the seven clades and thus cannot be regarded as diagnostic (Table 3). Furthermore, no head copulatory organs were observed in any of the specimens. Light microscopy examination of the arrangement of the accessory and primary dorsal papillae showed dramatic differences between the specimens in the seven clades.

**SEM revealed that the male genital openings in all examined *O. cinctipes* specimens comprised four spinous pads. The four genital pads were triangular shaped at the tip and broadened at the base. The genital pore had a cruciform shape and showed moderate levels of variation among the specimens examined. In both *O. roseus* and *O. herbertorum* the genital opening is also surrounded by four genital pads (Ruhberg and Hamer, 2005) and appears morphologically similar to those within *O. cinctipes*. SEM of the dorsal papilla,
shape and number of scale rings revealed several diagnostic differences both within and between the seven clades (Fig. 8; Table 3).

Discussion

Integration of independent data classes is required for delimiting onychophoran species

The present study highlights the troublesome nature of defining species in instances of ancient lineages wherein several diagnostic characters yield conflicting results in the number of OTUs. Our multilocus dataset suggests that *Opisthopatus cinctipes* is a species complex characterized by several allopatric and deeply divergent clades, species paraphyly and marked genetic substructure. Although our divergence time estimation is imprecise, it does support an ancient (Eocene or older) origin of all seven *Opisthopatus* clades. Divergence of the isolated populations of *Opisthopatus* occurred later, during the Miocene, suggesting a possible role of historical climatic ameliorations as an explanatory variable for extensive range fragmentation. Traditional morphological characters such as dorsal and ventral integument colour and leg pair numbers were of limited diagnostic value for detecting the numerous phylogenetic entities within the *O. cinctipes* species complex. Specifically, strong support for the nested placement of *O. roseus* and *O. herbertorum* within the *O. cinctipes* complex indi-
icates that the number of leg pairs is a poor indicator of species boundaries. This is consistent with the observation that segment number is a plastic character in other panarthropoda. For example, in the centipede *Strigamia maritima*, segment number has been shown to vary within the species with latitude and can be experimentally manipulated (Vedel et al., 2010). Similarly, genital characters did not prove useful for distinguishing *Opisthopatus* species. Unlike in many panarthropods, where the copulatory apparatus is often characterized by a lock-and-key mechanism and ensuing morphological differentiation to the level of species, fertilization via dermal insemination has been reported in the velvet worm family Peripatopsidae (Sedgwick, 1885). Within *Opisthopatus* we observed morphological invariance in the male genital anatomy using SEM, obviating inference of reproductive isolation based on genital architecture. Mating experiments could be used to assess the strength of reproductive isolation between inferred species, but these are beyond the scope of the present study.

By contrast, the arrangement of primary and secondary dermal papillae was diagnostic between and
within clades (Figs 3 and 8). The application of various species delimitation methods [clades established from the total (nuclear+mtDNA) evidence and mitochondrial matrices based on tree building methods, COI barcoding, traditional morphological characters, ultrastructural characters and Bayesian species delimitations] yielded conflicting results about the number of species that comprise the *O. cinctipes* species complex. Herein lies a conundrum, as there is considerable incongruence in the number of novel molecular OTUs between the various methods employed (ranging from 1 to > 60 species-level entities within the complex).

Consilience of delimitation methods is adjudicative of species boundaries

The question now arises as to which of these species-delineating approaches provides reasonable criteria for the recognition and diagnosis of species. Each of the methodological approaches has shortcomings, such as too few informative characters in external morphological datasets, or the tendency of bGMYC analyses based on mitochondrial data to overestimate GMYC clusters. Here we consider two alternatives. First, we postulate that only the seven geographically discrete clades are putative species. This conservative
<table>
<thead>
<tr>
<th>Locality no.</th>
<th>Locality</th>
<th>Province</th>
<th>Species</th>
<th>Clade</th>
<th>Leg pair number</th>
<th>Dorsal integument colour</th>
<th>Ventral integument colour</th>
<th>No. of scale rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Suurberg</td>
<td>Eastern Cape</td>
<td>O. cinctipes</td>
<td>2</td>
<td>16</td>
<td>Olive green</td>
<td>Creamy white</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Katberg</td>
<td>Eastern Cape</td>
<td>O. cinctipes</td>
<td>2</td>
<td>16</td>
<td>Olive green</td>
<td>Creamy white</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Grahamstown</td>
<td>Eastern Cape</td>
<td>O. cinctipes</td>
<td>2</td>
<td>16</td>
<td>Slate black</td>
<td>Creamy white</td>
<td>NSE</td>
</tr>
<tr>
<td>4</td>
<td>Rivendale Farm</td>
<td>Eastern Cape</td>
<td>O. cinctipes</td>
<td>2</td>
<td>16</td>
<td>Olive green</td>
<td>Light brown and creamy white</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>Kleinemonde River</td>
<td>Eastern Cape</td>
<td>O. cinctipes</td>
<td>2</td>
<td>16</td>
<td>Slate black</td>
<td>Light brown and creamy white</td>
<td>NSE</td>
</tr>
<tr>
<td>6</td>
<td>Kapp River NR</td>
<td>Eastern Cape</td>
<td>O. cinctipes</td>
<td>2</td>
<td>16</td>
<td>Light brown and gray</td>
<td>Creamy white</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>Graaff-Reinet NR</td>
<td>Eastern Cape</td>
<td>O. cinctipes</td>
<td>6</td>
<td>16</td>
<td>Light pink</td>
<td>Creamy white</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>Baytja</td>
<td>Eastern Cape</td>
<td>O. cinctipes</td>
<td>6</td>
<td>16</td>
<td>Light pink</td>
<td>Creamy white</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>Nocu</td>
<td>Eastern Cape</td>
<td>O. cinctipes</td>
<td>6</td>
<td>16</td>
<td>Light pink</td>
<td>Pearl white</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>Jenca Valley</td>
<td>Eastern Cape</td>
<td>O. cinctipes</td>
<td>6</td>
<td>16</td>
<td>Light pink</td>
<td>Pearl white</td>
<td>NSE</td>
</tr>
<tr>
<td>11</td>
<td>Port St Johns</td>
<td>Eastern Cape</td>
<td>O. cinctipes</td>
<td>7</td>
<td>16</td>
<td>Black and light brown</td>
<td>Creamy white with light brown</td>
<td>NSE</td>
</tr>
<tr>
<td>12</td>
<td>Port Edward</td>
<td>KwaZulu-Natal</td>
<td>O. cinctipes</td>
<td>7</td>
<td>16</td>
<td>Black and light brown</td>
<td>Light blue and creamy white</td>
<td>NSE</td>
</tr>
<tr>
<td>13</td>
<td>Mount Currie NR</td>
<td>KwaZulu-Natal</td>
<td>O. herbertorum</td>
<td>1</td>
<td>18</td>
<td>Light blue grey and white</td>
<td>Pearl white</td>
<td>NSE</td>
</tr>
<tr>
<td>14</td>
<td>Ngele Forest</td>
<td>KwaZulu-Natal</td>
<td>O. roseus</td>
<td>1</td>
<td>17</td>
<td>Blood red</td>
<td>Light pink</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>Weza Forest</td>
<td>KwaZulu-Natal</td>
<td>O. cinctipes</td>
<td>7</td>
<td>16</td>
<td>Blue black</td>
<td>Creamy white</td>
<td>NSE</td>
</tr>
<tr>
<td>16</td>
<td>Oribi Gorge NR</td>
<td>KwaZulu-Natal</td>
<td>O. cinctipes</td>
<td>7</td>
<td>16</td>
<td>Slate black</td>
<td>Creamy white</td>
<td>8</td>
</tr>
<tr>
<td>17</td>
<td>Garden Castle NR</td>
<td>KwaZulu-Natal</td>
<td>O. cinctipes</td>
<td>1</td>
<td>16</td>
<td>Slate black</td>
<td>Creamy white</td>
<td>NSE</td>
</tr>
<tr>
<td>18</td>
<td>Kamberg NR</td>
<td>KwaZulu-Natal</td>
<td>O. cinctipes</td>
<td>1</td>
<td>16</td>
<td>Indigo</td>
<td>Light blue and white</td>
<td>NSE</td>
</tr>
<tr>
<td>19</td>
<td>Highmoor NR</td>
<td>KwaZulu-Natal</td>
<td>O. cinctipes</td>
<td>1</td>
<td>16</td>
<td>Indigo</td>
<td>Creamy white</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>Injissuthi NR</td>
<td>KwaZulu-Natal</td>
<td>O. cinctipes</td>
<td>4</td>
<td>16</td>
<td>Light brown</td>
<td>Creamy white</td>
<td>10</td>
</tr>
<tr>
<td>21</td>
<td>Monks Cowl NR</td>
<td>KwaZulu-Natal</td>
<td>O. cinctipes</td>
<td>4</td>
<td>16</td>
<td>Light brown</td>
<td>Creamy white</td>
<td>8</td>
</tr>
<tr>
<td>22</td>
<td>Cathedral Peak NR</td>
<td>KwaZulu-Natal</td>
<td>O. cinctipes</td>
<td>4</td>
<td>16</td>
<td>Blue black</td>
<td>Creamy white with light brown</td>
<td>6</td>
</tr>
<tr>
<td>23</td>
<td>Royal Natal NR</td>
<td>KwaZulu-Natal</td>
<td>O. cinctipes</td>
<td>4</td>
<td>16</td>
<td>Light blue and brown</td>
<td>Light brown and white</td>
<td>7</td>
</tr>
<tr>
<td>24</td>
<td>Oliviershoek Pass</td>
<td>KwaZulu-Natal</td>
<td>O. cinctipes</td>
<td>4</td>
<td>16</td>
<td>Light brown and black</td>
<td>Creamy white</td>
<td>NSE</td>
</tr>
<tr>
<td>25</td>
<td>Ixopo</td>
<td>KwaZulu-Natal</td>
<td>O. cinctipes</td>
<td>7</td>
<td>16</td>
<td>Indigo</td>
<td>Creamy white</td>
<td>7</td>
</tr>
<tr>
<td>26</td>
<td>Karkloof</td>
<td>KwaZulu-Natal</td>
<td>O. cinctipes</td>
<td>4</td>
<td>16</td>
<td>Indigo</td>
<td>Creamy white with light brown</td>
<td>NSE</td>
</tr>
<tr>
<td>27</td>
<td>Vernon Crookes NR</td>
<td>KwaZulu-Natal</td>
<td>O. cinctipes</td>
<td>7</td>
<td>16</td>
<td>Blue black</td>
<td>Creamy white</td>
<td>8</td>
</tr>
<tr>
<td>28</td>
<td>Umkomaas</td>
<td>KwaZulu-Natal</td>
<td>O. cinctipes</td>
<td>7</td>
<td>16</td>
<td>Light brown</td>
<td>Creamy white</td>
<td>NSE</td>
</tr>
<tr>
<td>29</td>
<td>Krantz Kloof NR</td>
<td>KwaZulu-Natal</td>
<td>O. cinctipes</td>
<td>7</td>
<td>16</td>
<td>Black and brown</td>
<td>Creamy white</td>
<td>9</td>
</tr>
<tr>
<td>30</td>
<td>Pigeon Valley NR</td>
<td>KwaZulu-Natal</td>
<td>O. cinctipes</td>
<td>7</td>
<td>16</td>
<td>Light brown and grey and white</td>
<td>Creamy white</td>
<td>NSE</td>
</tr>
<tr>
<td>31</td>
<td>Nkandla Forest NR</td>
<td>KwaZulu-Natal</td>
<td>O. cinctipes</td>
<td>3</td>
<td>16</td>
<td>Light brown</td>
<td>Creamy white</td>
<td>9</td>
</tr>
<tr>
<td>32</td>
<td>Entumeni Forest NR</td>
<td>KwaZulu-Natal</td>
<td>O. cinctipes</td>
<td>7</td>
<td>16</td>
<td>Slate black</td>
<td>Creamy white</td>
<td>NSE</td>
</tr>
<tr>
<td>33</td>
<td>Hluhluwe-iMfolozi NR</td>
<td>KwaZulu-Natal</td>
<td>O. cinctipes</td>
<td>7</td>
<td>16</td>
<td>Slate black</td>
<td>Creamy white</td>
<td>NSE</td>
</tr>
<tr>
<td>34</td>
<td>Ongoya Forest NR</td>
<td>KwaZulu-Natal</td>
<td>O. cinctipes</td>
<td>7</td>
<td>16</td>
<td>Blue black</td>
<td>Creamy white</td>
<td>8</td>
</tr>
<tr>
<td>35</td>
<td>Uitsoek Forest NR</td>
<td>Mpumalanga</td>
<td>O. cinctipes</td>
<td>5</td>
<td>16</td>
<td>Black and brown</td>
<td>Creamy white</td>
<td>NSE</td>
</tr>
<tr>
<td>36</td>
<td>Buffels Kloof NR</td>
<td>Mpumalanga</td>
<td>O. cinctipes</td>
<td>5</td>
<td>16</td>
<td>Black and brown</td>
<td>Light brown and white</td>
<td>NSE</td>
</tr>
<tr>
<td>37</td>
<td>Mount Sheba NR</td>
<td>Mpumalanga</td>
<td>O. cinctipes</td>
<td>5</td>
<td>16</td>
<td>Slate black</td>
<td>Light blue and white</td>
<td>5</td>
</tr>
<tr>
<td>38</td>
<td>Crystal Springs NR</td>
<td>Mpumalanga</td>
<td>O. cinctipes</td>
<td>5</td>
<td>16</td>
<td>Blue black</td>
<td>Light blue and white</td>
<td>NSE</td>
</tr>
<tr>
<td>39</td>
<td>Graskop</td>
<td>Mpumalanga</td>
<td>O. cinctipes</td>
<td>3</td>
<td>16</td>
<td>Light brown and black</td>
<td>Light blue and white</td>
<td>8</td>
</tr>
<tr>
<td>40</td>
<td>God's Window</td>
<td>Mpumalanga</td>
<td>O. cinctipes</td>
<td>3</td>
<td>16</td>
<td>Blue black</td>
<td>Creamy white</td>
<td>NSE</td>
</tr>
<tr>
<td>41</td>
<td>Lone Creek</td>
<td>Mpumalanga</td>
<td>O. cinctipes</td>
<td>3</td>
<td>16</td>
<td>Light brown and black</td>
<td>Creamy white with light brown</td>
<td>NSE</td>
</tr>
<tr>
<td>42</td>
<td>Bridal Veil</td>
<td>Mpumalanga</td>
<td>O. cinctipes</td>
<td>3</td>
<td>16</td>
<td>Blue and light brown</td>
<td>Creamy white</td>
<td>NSE</td>
</tr>
<tr>
<td>43</td>
<td>Barberton</td>
<td>Mpumalanga</td>
<td>O. cinctipes</td>
<td>4</td>
<td>16</td>
<td>Slate black</td>
<td>Creamy white</td>
<td>NSE</td>
</tr>
</tbody>
</table>
approach potentially results in an underestimate of the species diversity within this group. This approach also encounters such hurdles as a handful of terminal operational units that could not be placed reliably within large clades. For example, the Graaff-Reinet specimens did not belong to a specific clade, rendering the status of *O. cinctipes* specimens from this locality problematic. Secondly, we postulate that each of the sample localities represents a distinct species, based on the markedly large *COI* uncorrected pairwise distances or the number of GMYC clusters. But an approach grounded in such algorithms may be prone to overestimating species diversity, either because of the use of an arbitrary threshold for delimiting species boundaries (*COI* distances) or because of the contingency of GMYC analyses on molecular dates, which are imprecise. While our results accord with genetic isolation of all studied populations we were unable to determine through either inductive or experimental approaches which lineages within the *O. cinctipes* species complex are reproductively isolated.

There is very clear mitochondrial–nuclear DNA incongruence, as the rapidly evolving mitochondrial data reflect several genetically and geographically discrete clades (Fig. 2) while the slowly evolving nuclear DNA data reflected only two of the seven clades evident from the mtDNA analyses, suggesting that the marker selected is too slow to detect species boundaries within the *O. cinctipes* species complex. Fernández and Giribet (2014) made a similar observation while studying the mite harvestman *Aoraki denticulata* where a single *28S rRNA* haplotype was present for 54 specimens. In our study we found a total of 26 haplotypes (results not shown) for the 49 specimens sequenced for the *18S rRNA* locus within the *O. cinctipes* species complex. Similar problems have also been encountered while studying the mite harvestman *Metasiro* (Clouse et al., 2015). This pattern of high mtDNA structure and low nuDNA variation is clearly a problem typical of sedentary saproxylic panarthropods.

Species paraphyly has been documented in numerous panarthropod taxa and can be attributed to incorrect taxonomic designations, systematic error in phylogenetic resolution, hybridization, incomplete lineage sorting (ILS) or paralogy (Bond et al., 2001; Funk and Omland, 2003; Hendrixson and Bond, 2005). While our data does not provide evidence of hybridization or ILS due to the low evolutionary rate of the *18S rRNA*, high intraspecific diversity of the *O. cinctipes* species complex and the deeply nested position of the other *Opisthopatus* species suggest that neither hybridization nor ILS alone can account for the patterns we observed. We also did not detect stop codons in *COI*, which could have suggested paralogy as an explanatory variable. Paralogy affecting nuclear loci that are commonly used for invertebrate popula-

<table>
<thead>
<tr>
<th>Locality no.</th>
<th>Locality Province</th>
<th>Species Clade</th>
<th>Leg pair number</th>
<th>Dorsal integument colour</th>
<th>Dorsal integument colour</th>
<th>No. of scale rings</th>
<th>Ventral integument colour</th>
<th>Ventral integument colour</th>
<th>NSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>Nelshoogte Mpumalanga</td>
<td>O. cinctipes</td>
<td>5</td>
<td>Black and light brown</td>
<td>Creamy white</td>
<td>6</td>
<td>Creamy white</td>
<td>Creamy white</td>
<td>NSE</td>
</tr>
<tr>
<td>46</td>
<td>Kaapscehoop Mpumalanga</td>
<td>O. cinctipes</td>
<td>5</td>
<td>Black and light brown</td>
<td>Creamy white</td>
<td>6</td>
<td>Creamy white</td>
<td>Creamy white</td>
<td>NSE</td>
</tr>
<tr>
<td>47</td>
<td>Mariepskop Forest NR Mpumalanga</td>
<td>O. cinctipes</td>
<td>3</td>
<td>Black and light brown</td>
<td>Creamy white</td>
<td>6</td>
<td>Blue black</td>
<td>Creamy white</td>
<td>NSE</td>
</tr>
<tr>
<td>48</td>
<td>Alexandria Forest NR Eastern Cape</td>
<td>O. cinctipes</td>
<td>2</td>
<td>Blue black</td>
<td>Light brown and creamy white</td>
<td>6</td>
<td>Light blue</td>
<td>Creamy white</td>
<td>NSE</td>
</tr>
<tr>
<td>49</td>
<td>Zinkwazi KwaZulu-Natal</td>
<td>O. cinctipes</td>
<td>7</td>
<td>Light blue</td>
<td>Light brown and creamy white</td>
<td>6</td>
<td>Light brown and creamy white</td>
<td>NSE</td>
<td></td>
</tr>
</tbody>
</table>

NSE = no scanning electron micrograph.
tion genetics have been reported in several studies (e.g. Riesgo et al., 2012; Clouse et al., 2013), but the overall congruence between the mtDNA and 18S rRNA trees suggests this is unlikely. We thus conclude that taxonomic inaccuracy is the likely culprit behind the observed paraphyly. Were we to recognize each of the seven clades as distinct species, it would imply that one of the currently recognized species, *O. herbertorum*, should be synonymized with *O. roseus* (Clade 1). These results favour the second hypothesis and underline the discovery that higher levels of alpha diversity are potentially present within the *O. cinctipes* species complex, with five of these clades representing novel lineages. Our study demonstrates that morphology-based taxonomy, particularly the use of leg pair number and colour to delimit species, has grossly underestimated species-level diversity. Recent studies on the South African *Peripatopsis* corroborate these revelations (McDonald et al., 2012; Daniels et al., 2013; Ruhberg and Daniels, 2013). Similarly, taxonomic studies on the Neotropical Peripatidae (Oliveira et al., 2011, 2012a) have revealed marked species diversity obscured by traditional morphological characters such as leg pair numbers. However, the structure and arrangement of the secondary and primary dermal papilla were very distinct among the seven clades, indicating that these represent a useful morphological tool in differentiating cryptic lineages. Bayesian species

Fig. 8. Scanning electron micrographs of the arrangement of dorsal dermal papillae in the *O. cinctipes* species complex that are representatives of the seven clades. White dots indicate the number of scale rings. (a) Injisuthi, (b) Royal Natal NR, (c) Ngome, (d) Cathedral Peak NR, (e) Graskop, (f) Mount Sheba NR, (g) Suurberg, (h) Rivendell, (i) Ngele for *O. roseus*, (j) Highmoor NR, (k) Baziya, (l) Nocu, (m) Graaff-Reinet and (n) Oribi Gorge.
delimitation methods are prone to over-splitting species in instances where significant population structure is evident, and instances where an inaccurate guide tree is used in the analyses can lead to spurious conclusions.

With few exceptions, specimens in the *O. cinctipes* species complex from the same localities were retrieved as monophyletic with good statistical support and exhibited strong genealogical and geographical exclusivity. Our results demonstrate genetic isolation among all conspecific *O. cinctipes* populations and are corroborated by the absence of shared maternal haplotypes, as evident from the marked population differentiation and statistically significant F_{ST} values across all sample localities. These results suggest maternal philopatry in *Opisthopatus* populations. Furthermore, the population genetic results corroborate the fragmented nature of the forested habitat where velvet worms typically occur and reflect their general inability to disperse across xeric boundaries as no haplotypes were shared between sample localities. Marked genetic differentiation is a pattern typical of velvet worms and other sedentary saproxylic taxa (Boyer et al., 2007; McDonald and Daniels, 2012; Daniels et al., 2013). For example, a recent study by Bull et al. (2013) on the widely distributed velvet worm *Euperipatoides rowelli* revealed the presence of six genetically distinct lineages characterized by marked genetic differentiation. During the present study we observed low haplotype and nucleotide diversity, a pattern typical of isolated populations. This can be attributed to low abundances through evolutionary time, resulting in small effective popula-

Fig. 8. continued.
tion sizes, inbreeding and the effects of genetic drift on small populations. These populations may also reflect the impact of population bottlenecks, a result corroborated by values of Fu’s F_\text{S}

The mean sequence divergences for the COI locus between the seven geographically and genetically defined \textit{O. cinctipes} clades (> 19%) were higher than divergences between morphologically defined sister species, such as the two \textit{Metaperipatus} species, all the \textit{Ooperipatus} and \textit{Planipapillus} species outgroups, and among the three \textit{Peripatopsis} species complexes (\textit{P. balfouri}, \textit{P. capensis} and \textit{P. moseleyi}) (Daniels and Rubberg, 2010; McDonald and Daniels, 2012; Daniels et al., 2013). Most authors allude to the presence of cryptic species or the existence of a novel species when marked sequence divergence values are detected (Hebert et al., 2003a,b, 2004a,b; Boyer et al., 2007; Daniels et al., 2013). Hebert et al. (2003a) suggested that sequence divergences greater than 11% indicate separate species for a wide range of invertebrate taxa in their review of pairwise genetic (mtDNA) divergences. Implementing this cut off in this study would imply that numerous new species are nested within the \textit{O. cinctipes} species complex. However, such a cut off is arbitrary, as it does not address recent speciation events or the presence of ancestral polymorphism. We cannot justify the untested use of this value in defining molecular taxonomic units, although we are cognizant that these results imply genetic isolation and potential reproductive divergence between the seven clades. Our results are more complex, as the mean within-clade sequence divergence is 12%, suggesting that by using this benchmark in the identification of novel lineages, we are potentially underestimating species-level diversity within \textit{Opisthopatus}.

\textbf{Colour patterns in Opisthopatus are polymorphic and contingent upon ontogenetic stage}

We observed large-scale variation in polymorphism in dorsal and ventral body colour within the \textit{O. cinctipes} species complex. Varying colour patterns within species complexes have also been documented for other velvet worms such as \textit{Peripatopsis} (Daniels et al., 2009). Recent results suggest that in certain instances the colour differences in the three \textit{Peripatopsis} species complexes (\textit{P. balfouri}, \textit{P. capensis} and \textit{P. moseleyi}) may to a varying degree indicate distinct species status (McDonald and Daniels, 2012; Daniels et al., 2013; Rubberg and Daniels, 2013). For example, within \textit{P. moseleyi} colour was a clear diagnostic character between genetically distinct sympatric lineages that were previously considered to be conspecific, but within \textit{P. capensis} distinct colour morphs (bright red and slate black) were genetically invariant. Colour polymorphism has also been observed in several invertebrate taxa such as butterflies (Kapan, 2001), leaf beetles, \textit{Plateumaris sericea} (Kurachi et al., 2002) and in walking stick insects \textit{Timema cristata} (Nosil, 2004). Several processes are known to promote colour polymorphism. These include sensory bias, divergent and disruptive selection, environment contingent sexual selection, heterosis, disassortative mating, reproductive tradeoffs, intermittent natural selection and genetic drift.

Divergent selection and disruptive selection may be the possible drivers of the colour variation observed within the \textit{O. cinctipes} species complex. Both forms of selection may take hold when individuals occur in isolated microhabitats and experience a different type of environment for extended periods (Gray and McKinnon, 2006). Due to their limited dispersal abilities, sedentary life history and specific microhabitat requirements, divergent and/or disruptive selection may have occurred within the \textit{O. cinctipes} species complex leading to colour polymorphism. The polymorphism in body colour is likely to allow the velvet worm species complex to exploit a variety of habitat types, enabling camouflage and promoting cryptis. We observed clear ontogenetic changes in body colour in the \textit{O. cinctipes} species complex, suggesting that colour per se is not a suitable diagnostic feature in differentiating putative lineages within the \textit{O. cinctipes} species complex. The evolutionary value of these bright colour morphs is unknown.

The biogeography of \textit{O. cinctipes} suggest a role for range fragmentation and ancient and range fragmentation among the deeply divergent clades

We observed complex biogeographical patterns in the \textit{O. cinctipes} species complex, with clades demonstrating a very strong correspondence to geographical regions and forest type. Within regions, multiple independent colonizations occurred in nearly every region considered in this study, resulting in several non-sister clades being monophyletic within regions, such as the Drakensberg Mountains, which are inhabited by two genetically highly divergent clades. Divergence time estimation indicates that the \textit{O. cinctipes} species complex originated during the Cretaceous, with steady net diversifications throughout the Eocene, and rapid differentiation within populations during the Miocene. The latter result is broadly congruent with those obtained by Murienne et al. (2014) for a global study on velvet worms, while Daniels et al. (2015) also recently observed an Eocene cladogenesis for Afrotropical freshwater crabs. Similarly, a large-scale phylogeny of chameleons (a group highly dependent on forest and vegetation) also suggests an Eocene diversification at the genus level, while a species-level diversification generally occurred primarily during the Oligocene (Tolley et al., 2013). During the Paleocene and Eocene (65–38 Mya) temperatures were...
higher (Deacon, 1983) and associated with wetter conditions, resulting in expansion of the forest biome and of the distribution of the ancestral species ranges. However, subsequently, climatic oscillations during the Oligocene resulted in cooler and drier climatic conditions and the contraction and fragmentation of forests throughout South Africa. During the Early Miocene, climatic conditions were warmer and wetter, and forests were presumably widespread along the coastal lowlands and mountainous interior of South Africa (Deacon, 1983). At the onset of the Middle Miocene, climatic conditions in South Africa deteriorated, resulting in a progressive decrease in precipitation (Lawes, 1990; Eeley et al., 1999) and increased aridification and shifts in the forest floral and faunal distribution patterns that persisted and intensified during the Plio/Pleistocene (Sepulchre et al., 2006). Consequently, Afrotemperate forests contracted and became confined to the high-elevation, wetter mountain slopes and deep river valleys in the eastern portions of South Africa (Lawes, 1990). These Oligocene/Miocene climatic changes resulted in vicariance and the formation of several of the observed clades.

Marked marine transgressions resulted in flooding of the coastal lowlands. The decrease in precipitation coupled with the dramatic uplift along the Eastern Cape coast and progressive climatic oscillations resulted in further contraction of Afrotemperate forests to high-altitude areas acting as micro-refugia for forest-dwelling taxa such as *O. cinctipes*, resulting in deep genetic divergences among Afrotemperate forest populations of the species. The phylogenetic tree for the *O. cinctipes* species complex supports the hypothesis that Afrotemperate forest velvet worm populations are ancestral, a result corroborated by the divergence time estimations (Fig. 3). We observed two independent dispersal and colonization events amongst both Afrotemperate and IOCK forests. For example, the IOCK velvet worm specimens are present in two highly divergent clades, 2 and 7. In Clade 2 specimens from the Eastern Cape province are sister to specimens from the Afrotemperate forests, while in Clade 7 specimens belong to the IOCK in KwaZulu-Natal province, suggesting at least two independent colonizations of this habitat. Similarly, in the Afrotemperate forest patches along the Drakensberg Mountains we observe at least two independent colonization scenarios (Fig. 3). The Drakensberg Mountains habitats have acted as a high-altitude refugium for forest-dwelling taxa. During periods of harsh climatic conditions, deeply incised gorges and cliffs on elevated plateaus may have provided a refugium for velvet worm species and other palaeoendemic forest taxa (Hughes et al., 2005; Ramdhani et al., 2008). The Drakensberg Mountains have been cited as potential refugia for several taxa (Lawes, 1990; Eeley et al., 1999; Ramdhani et al., 2008). Similarly, for the Afrotemperate Mpumalanga Highveld forests we also observed two distinct colonizations (clades 3 and 5, Fig. 3). Our results do not support a recent evolutionary origin for the IOCK clade, suggesting that the ancestral species probably survived in adjacent areas in the interior when the coastal plains were covered by marine transgressions. Evidence for the latter observation is present in the basal placement of the interior Afrotemperate forests in clades comprising IOCK specimens. For example (Fig. 6), in Clade 2, Katberg samples are placed basally. Direct comparisons of phylogeographical patterning for South African co-distributed forest-dwelling taxa is problematic as these studies did not undertake divergence time estimations (Moussalli et al., 2009; Moussalli and Herbert, 2016), did not include samples from the same geographical region as in the present study (Tolley et al., 2006) or examined phylogeographical patterning in taxa that are considerably more recent invaders of forested habitats, resulting in an absence of phylogeographic patterning (Willows-Munro and Matthee, 2011).

We consider these seven clades as evolutionary significant units (ESUs following the definition by Crandall et al., 2000) as they are distinct at the DNA level, geographically discrete and ecologically divergent (occurring in very distinct habitats). Saproxylic environments such as leaf litter and decaying logs of wood harbour a wealth of taxonomic diversity and endemism, particularly among invertebrate lineages, as well as groups that possesses deep genetic population differentiation, suggesting that they are worthy of conservation. However, the conservation of saproxylic environments in South Africa is poorly studied. Our results reveal a wealth of taxonomic diversity, a pattern that probably exists in several taxa characterized by low dispersal capability, suggesting they warrant study and conservation. Taken together, these results highlight the problem with the exclusive reliance on traditional morphological characters, and underline the need for integrative molecular systematic endeavors on eumetazoan lineages characterized by a conservative body plan such as Annelida and Platyhelminthes (King et al., 2008), which may similarly harbour marked diversity obscured by traditional taxonomic characters.

Systematics

Family Peripatopsidae Bouvier, 1905

Genus Opisthopatus Purcell, 1899

Type species. *Opisthopatus cinctipes* Purcell 1899

Opisthopatus cinctipes var. natalensis Bouvier, 1900, Bull. Soc. Ent. France. 68.
Opisthopatus cinctipes var. natalensis Bouvier, 1900, Q. J. Micr. Sci.
Opisthopatus cinctipes Choonoo, Fort Hare Papers 1: 71–119.
Opisthopatus cinctipes var. amatolensis Choonoo, Fort Hare Papers, 1: 72.

Opisthopatus cinctipes Herzberg, 1979, Staatsexamensarbeit, Keil.

Pregenital leg pairs: 16, the last pair of legs fully developed with four foot pads and claws. Last leg pair well developed and also used in walking.

Anal cone short.

Male genitalia composed of four pads, female genital area is longitudinal.

Dorsal integument colour highly variable and varies from slate grey to blue black to brown, while the ventral integument colour varies from creamy white to brown.

Behaviour: spirals when initially exposed.

Geographically widely distributed in discontinuous forest patches along the interior and coastal plains from the Eastern Cape into KwaZulu-Natal and the Mpumalanga provinces of South Africa.

Opisthopatus cinctipes sensu stricto (Clade 2, Figs 3, 7a, b, 8g, h and Table 3)

Holotype: Not designated.

Type locality: Dunbrody, near Blue Cliff Station, Uitenhage Division (formerly the Cape Colony), Eastern Cape province, South Africa.

Diagnosis. GenBank accession numbers for Clade 2

Description.

- **Dorsal body primary papilla.** The number of scale rings varies from five to 12 (Table 3). A similar result has been reported by Ruhberg and Hamer (2005).

- **Colour Pattern.** Dorsal integument colour highly variable ranging from blue back to olive green. Ventral integument cream coloured with blue spots occasionally (Fig. 7, Table 3).

- **Leg pairs.** Sixteen leg pairs.

- **Genital opening.** Male genital pore cruciform, female genital pore a horizontal and small vertical slit with tumid lips.

- **Distribution.** Confined to the Eastern Cape Afrotemperate and IOCB forests. Typically found under or inside decaying logs of indigenous wood, as well as in decaying *Aloe* plants along the coastal margins.

Opisthopatus roseus sensu stricto Lawrence 1947

Clade 1 (Figs 3, 7, 8i, j, 9a, b and Table 3)

Fig. 9. Photographs of the dorsal image of live velvet worms (*Opisthopatus*) to show the variation in colour among some of the described and novel species. (a) *O. roseus* Lawrence 1947, *sensu stricto* from Ngele forest, KwaZulu-Natal province; (b) *O. herbertorum* Ruhberg and Hamer (2005) from Mount Currie NR, now regarded as a junior synonym of *O. roseus*; (c) *O. drakensbergi* sp. nov., from Cathedral Peak NR, KwaZulu-Natal province; (d) *O. highveldi* sp. nov., from Graskop on the Highveld of the Mpumalanga province; (e) *O. amaxhosa* sp. nov., from Nocu from Eastern Cape province; and (f) *O. kwazululandi* sp. nov., from Pietermaritzburg, KwaZulu-Natal province. Scale bars = 5 mm.

Holotype. NM 348 and NM 349, deposited in the Natal Museum (NM), Pietermaritzburg, South Africa.

Type locality. East Griqualand, Ingeli Forest (or sometimes spelled Ngele), near Kokstad, KwaZulu-Natal province, South Africa.

Diagnosis. GenBank accession numbers for Clade 1.

Description.

Dorsal body primary papilla. The number of scale rings was fixed at four (Table 3).

Colour Pattern. Dorsal integument highly variable, ranging from blood red to pearl white to indigo in the Drakensberg Mountain specimens. Ventral integument in certain species blood red to pearl white (Fig. 7, Table 3).

Leg pairs. Sixteen, 17 and 18 leg pair numbers for *O. cinctipes*, *O. herbertorum* and *O. roseus*, respectively. This is the only clade where leg pair number varies. In the remaining six clades leg pair number is invariant.

Genital opening. Male genital pore cruciform, female genital pore a horizontal and small vertical slit with tumid lips.

Distribution. High-altitude indigenous Afrotemperate forest areas along the southern portions of the Drakensberg Mountains in the KwaZulu-Natal province, including Garden Castel NR, Kamberg NR and Highmoor NR in South Africa.

Remarks. Based on the genetic data presented and the paraphyletic relationship within *Opisthopatus* based on the total DNA sequence tree (Fig. 3), *O. herbertorum* Ruhrberg and Hamer (2005) is nested within this clade and is here designated as a junior synonym of *O. roseus* Lawrence (1947). As *O. roseus* is the oldest published name, we include the specimen of both *O. cinctipes sensu stricto* and *O. herbertorum* in this clade under *O. roseus*. *Opisthopatus roseus sensu stricto* species appear to be confined to the southern portions of the Drakensberg Mountains in KwaZulu-Natal province, South Africa. The number of leg pairs is highly variable in this clade, and has traditionally been used to delineate the three hitherto described *Opisthopatus* species. However, several recent studies have indicated that leg pair number is a poor taxonomic tool in velvet worms (Ruhberg and Daniels, 2013; Daniels et al., 2013). Similarly, colour appears to be highly variable within *O. roseus* as in most other *Opisthopatus* species. McDonald et al. (2012) reported widespread colour variation within *Peripatopsis capensis* Grube 1866 and *P. lawrencei* McDonald et al. (2012)

Opisthopatus highveldi sp. nov. Clade 3 (Figs 3, 7, 8e, 9d and Table 3)

Paratypes. Two males, 1 female, one damaged specimen, 3 juveniles (SAM-ENW-C007162), God’s Window, 24°52.590'S, 30°53.288'E, Highveld of Mpumalanga province, South Africa, collected S.R. Daniels, N. Solomons, C. Kunaka and F. van Zyl, 11 June 2009.

Dimensions. TL of the two holotypes ranged from 15.86 to 17.10 mm, while the DB ranged from 1.69 to 1.76 mm.

Dorsal body primary papilla. The number of scale rings was fixed at nine (Table 3).

Diagnosis. GenBank accession numbers for Clade 3.

Description.

Colour pattern. Dorsal integument brown to black to indigo. Ventral integument creamy white with light brown papillae (Fig. 7, Table 3).

Leg pairs. Sixteen leg pairs.

Genital opening. Male genital pore cruciform, female genital pore a horizontal and small vertical slit with tumid lips.

Distribution. Occurs in indigenous Afrotemperate forest patches along the Highveld in Mpumalanga province, South Africa. Typically found in decaying logs of wood that are moist or under moss in close proximity to waterfalls where the animals occur in the top 1 cm of the water-soaked soil. A single allopatric population is present at Nkandla Forest on the KwaZulu-Natal coast.

Etymology. Named for the Highveld of Mpumalanga, an inland plateau with an altitude above 1500 m.a.s.l but below 2000 m.a.s.l.

Remarks. Opisthopatus highveldi sp. nov. is sister to Clade 4, with both being novel species.

Opisthopatus drakensbergi sp. nov. Clade 4 (Figs 3, 7, 8a, b, c, d, 9c and Table 3)

Holotype. One male (SAM-ENV-C007136), Royal Natal National Park, 28°41.373’S, 28°56.246’E, KwaZulu-Natal province, South Africa, collected C. Had dad, 21 January 2011.

Paratypes. One male and 1 juvenile (SAM-ENV-C007141), Cathedral Peak NR, 28°96.184’S, 29°22.138’E, KwaZulu-Natal province, South Africa, collected G. Giribet, S. Daniels and B. de Bivort, 15 November 2011.

Dimensions. TL of the holotype was 13.41 mm, while DB was 2.41 mm.

Diagnosis. GenBank accession numbers for Clade 4.

Description.

Dorsal body primary papilla. The number of scale rings varied from 7 to 10 (Table 3).

Colour pattern. Dorsal integument brown and slate black with a well-developed mid-dorsal line. Ventral integument is predominantly brown (Fig. 7, Table 3). Sometimes has a light brown lateral line.

Leg pairs. Sixteen leg pairs.

Genital opening. Male genital pore cruciform, female genital pore a horizontal and small vertical slit with tumid lips.

Distribution. Occurs at high altitude in allopatric indigenous Afrotemperate forest areas in the northern Drakensberg Mountains of KwaZulu-Natal province of South Africa. Found under moss on rocks after heavy summer downpours, and also in decaying logs of wood in closed-canopy forests. Two geographically isolated populations of O. drakensbergi sp. nov. are present at Barberton and at the Ngome forest (Ntandeka Wilderness area) based on the phylogenetic evidence (Fig. 3). The latter observation
probably represents a sampling gap as the Great Escarpment was not sampled between these Drakensberg Mountains and the two latter two eastern localities.

Etymology. Named after the Drakensberg Mountains in KwaZulu-Natal province, South Africa.

Remarks. Two species are present on the Drakensberg Mountains, *O. roseus* and *O. drakensbergi* sp. nov., restricted to the southern and northern portions of the mountains, respectively.

Opisthopatus swathii sp. nov. Clade 5 (Figs 3, 7, 8f and Table 3)

Dimensions. TL for the three male holotypes ranged from 13.34 to 19.91 mm, while DB ranged from 0.65 to 1.56 mm.

Diagnosis. GenBank accession numbers for Clade 5.

Description. Dorsal body primary papilla. The number of scale rings varied from 5 to 6 (Table 3).

Colour pattern. Dorsal integument blue to slate black. Ventral integument light brown to creamy white (Fig. 7, Table 3). Juveniles light pink, fading to pearl white when preserved.

Leg pairs. Sixteen leg pairs.

Genital opening. Male genital pore cruciform, female genital pore a horizontal and small vertical slit with tumid lips.

Distribution. Occurs in indigenous Afrotemperate forest patches along the Highveld in Mpumalanga province, South Africa, often in close proximity to small streams in closed-canopy forests. Occurs in or under bark and in leaf litter.

Etymology. Named for the Swati people who inhabit this region of Mpumalanga.

Remarks. Two *Opisthopatus* species are present in Mpumalanga, *O. highveldi* sp. nov. and *O. swathii* sp. nov.

Opisthopatus amaxhosa sp. nov. Clade 6 (Figs 3, 7, 8k, l, 9e and Table 3)

Additional material. Two females, 2 juveniles (SAM-ENW-C007149), Nucu forest, Langeni area, 31°24.928’S, 28°29.990’E, Eastern Cape province, South Africa, collected D. Herbert and L. Davis, 18 February 2006.

Dimensions. TL of the holotype was 21.78 mm, while DB as measured in line with oncopod 10 was 2.36 mm.

Diagnosis. GenBank accession numbers for Clade 6.

COI: KR907152–KR907163.

12S rRNA: KR906967–KR906978.

18S rRNA: KR907219–KR907221.

Description. Dorsal body primary papilla. The number of scale rings varied from 4 to 7 (Table 3).

Colour pattern. Dorsal integument varies from light pink (fading to pearl white when preserved), blue black to indigo. Ventral integument varies from light brown with white patches (Fig. 7, Table 3).
Leg pairs. Sixteen leg pairs.

Genital opening. Male genital pore cruciform, female genital pore a horizontal and small vertical slit with tumid lips.

Distribution. Distributed in the Afrotropical forests of north-eastern Eastern Cape province where it borders with KwaZulu-Natal province, South Africa. Found under or inside decaying indigenous logs of wood or in leaf-litter.

Etymology. Named after the amaXhosa people of the region.

Remarks. Opisthopatus amaxhosa sp. nov. is sister to Clade 7; specimens are rose pink when alive, but fade to pearl white when preserved.

Opisthopatus kwazululandi sp. nov. Clade 7 (Figs 3, 7, 8n, 9f and Table 3).

Additional material. Two males, 1 juveniles (SAM ENW-C007188), Oribi Gorge Nature Reserve, 30°42.376’S, 30°16.211’E, KwaZulu-Natal province, South Africa, collected S.R. Daniels and H. van den Worm (no date); 4 females, 2 males, 1 juvenile, Krantzkloof Nature Reserve, Pietermaritzburg, 29°47.303’S, 30°43.707’E, KwaZulu-Natal province, South Africa, collected S.R. Daniels and H. van den Worm (no date); 2 females, 2 juveniles (SAM ENW-C007191), Ongoya forest Nature Reserve, 28°51.569’S, 31°38.996’E, KwaZulu-Natal province, South Africa, collected S.R. Daniels and H. van den Worm (no date); 7 females 1 juvenile (SAM ENW-C007192), Entumeni forest, KwaZulu-Natal province, South Africa, collected S.R. Daniels and H. van den Worm (no date); 5 males, 1 damaged, 3 juveniles (SAM ENW-C007180), Port Edward, 31°05.348’S, 30°11.086’E, KwaZulu-Natal province, South Africa, collected S.R. Daniels, N. Solomons and F. van Zyl (no date); 2 males, 1 female, 2 juveniles (SAM ENW-C007179), Hluhluwe-iMfolozi, 28°07.441’S, 32°03.504’E, KwaZulu-Natal province, South Africa, collected S.R. Daniels, F. Gordon, G. Baatjies and M. Pérez-Losada, 1 May 2011; 1 female (SAM ENW-C007181), Port St Johns, (no GPS coordinates), Eastern Cape province, South Africa, collected by M. Bursey, 24 January 2006; 3 juveniles (SAM ENW-C007182), Zinkwazi Beach, 29°17.253’S, 31°53.587’E, KwaZulu-Natal province, South Africa, no collector information and no date; 1 specimen damaged (SAM ENW-C007183), Zinkwazi Beach, KwaZulu-Natal province, South Africa, no GPS coordinates, no date; 1 female (SAM ENW-C007185), Pigeon Valley (no GPS coordinates), Durban, KwaZulu-Natal, South Africa, collected D. Herbert (no collection date); 1 male (SAM ENW-C007186), Port St Johns, 31°35.857’S, 29°31.991’E, Eastern Cape province, South Africa, collected by C. Haddad, 10 January 2011; 2 juveniles (SAM ENW-C007187), Ixopo district, 30°00.781’S, 30°03.839’E, KwaZulu-Natal province, South Africa, collected S.R. Daniels and H. van den Worm, 10 September 2007; 4 juveniles (SAM ENW-C007184), Wcza forest, 30°63.113’S, 29°71.596’E, Eastern Cape province, South Africa, collected G. Giribet, S. Daniels and B de Bivort, November 2011.

Dimensions. TL of the male and female holotypes was 15.84 and 22.10 mm, respectively, while DB was 3.50 and 3.44 mm, respectively.

Description.

Dorsal body primary papilla. The number of scale rings varied from 7 to 9 (Table 3).

Colour pattern. Dorsal integument light brown or brown with black; for some specimens the initial colour was rose pink that faded to cream upon preservation. Ventral integument light brown to creamy white (Fig. 7, Table 3).

Leg pairs. Sixteen leg pairs.

Genital opening. Male genital pore cruciform, female genital pore a horizontal and small vertical slit with tumid lips.

Distribution. Restricted to the IOCB and adjacent interior of Eastern Cape and KwaZulu-Natal province of South Africa occurring from Port St Johns to Hluhluwe-iMfolozi Nature Reserve. Typically found in closed-canopy environments, in decaying indigenous logs of wood or in the soil beneath the decaying logs, depending on the moisture availability.

Etymology. Named for its predominant distribution along the coastal margins of KwaZulu-Natal province.

Remarks. This recently derived clade is variable in dorsal and ventral integument colour but has a stable number of leg pairs and is sister to Opisthopatus amaxhosa sp. nov.
Acknowledgments

An SABI grant from the National Research Foundation to the senior author made this research possible, while the University of Stellenbosch is thanked for logistical support. The Fulbright Scholarship Program and the Oppenheimer Memorial Trust are thanked for financial support while the first author was on sabbatical at Harvard University, USA, where a part of the research was undertaken and written. The DNA sequencing facility and the SEM unit at Stellenbosch University are thanked for their support and help; particular thanks goes to Madelein Frazenburg. Ezemvelo-KNZ Wildlife, the Eastern Cape Wildlife and Mpumalanga Parks are thanked for permits that allowed for sampling to be conducted in nature conservation areas. Dai Herbert, C. Haddad, Vir Bills, Gonzalo Giribet, Charmain Uys, Adnan Moussalli, Michelle Hamer, Johanna Horn, Mary Bursey and Mike Picker are thanked for sample collection. Nicolas Solomons, Hein van den Worm, Gail Baatjies, Marcos Perez-Losada and Fawzia Gordon are thanked for help during fieldwork. Comments by Mark Siddall and one anonymous reviewer improved a previous draft of the manuscript. Dai Hebert, Gonzalo Giribet and Mike Picker are thanked for their willingness to share photographic images of live velvet worms. A special word of gratitude to Dawn Larsen of the South African Museum for accessioning the specimens at such short notice.

References

Engelbrecht, H., Heideman, N.J.L., van Niekerk, A., Daniels, S.R., 2013. Tracking the impact of Pliocene/Plenistocene sea level and climatic oscillations on the cladogenesis of the Cape legless...

differentiation in a North American crab species throughout its
native range and invaded European waters: a phylogeographic
analysis. Biol. Invas. 12, 253–263.
detecting temporal shifts in diversification rates from molecular
Available from http://beast.bio.ed.ac.uk/
Afroamontane centre of endemism: Kniphofia moench
(Asphodelaceae) as a floristic indicator. J. Biogeog. 35, 1–16.
Reid, A.L., 1996. Review of the Peripatopsidae (Onychophora) in
Australia, with comments on Peripatopsidae relationships. Invert.
Syst. 10, 663–936.
Reid, N.M., Carstens, B.C., 2012. Phylogenetic estimation error can
decrease the accuracy of species delimitation: a Bayesian
implementation of the general mixed Yule-coalescent model.
Riesgo, A., Andrade, S.C.S., Sharma, P.P., Novo, M., Perez-Porro,
A.R., Vahter, V., Gonzalez, V., Kawauchi, G.Y., Giribet, G.,
2012. Comparative description of ten transcriptomes of newly
sequenced invertebrates and efficiency estimation of genomic
Planipapillus, lawn headed onychophorans of the Australian
Alps, based on nuclear and mitochondrial gene sequences. Mol.
phylogenetic inference under mixed models. Bioinformatics 19,
1572–1574.
Ruhberg, H., 1985. Die Peripatopsidae (Onychophora). Systematik,
Ökologie, Chorologie und phylogenetische Aspekte. Zoologisch
46, 1–183.
Ruhberg, H., Daniels, S.R., 2013. Morphological assessment
supports the recognition of four novel species in the widely
distributed velvet worm Peripatus moseleyi (Onychophora: Peripatopsidae).
Invert. Syst. 27, 131–145.
(Onychophora: Peripatopsidae) from KwaZulu-Natal, South
de Salle, M., Egan, M.G., Siddall, M., 2005. The unholy trinity:
taxonomy, species delimitation and DNA barcoding. Phil. Trans.
copy nuclear DNA markers for the Onychophoran Phalloecephale
Sedgwick, A., 1885. The development of Peripatus capensis Part I.
Sepulcre, P., Ramstein, G., Fluteau, F., Schuster, M., Tiercelin, J.,
Brunet, M., 2006. Tectonic uplift and Eastern Africa
Stamatakis, A., 2006. RAxML-VI-HPC: maximum likelihood based
phylogenetic analysis with thousands of taxa and mixed models.
Bioinformatics 22, 2688–2690.
Parsimony (and Other Methods), Version 4.10. Illinois Natural
History Survey, Champaign, IL.
tropical forests in Africa: Implications for protected area
planning and management. Impacts of climate change on
ecosystems and species: implications for protected areas: 77–94.
Gland, IUCN.
Biogeographic patterns and phylogeography of dwarf chameleons
(Bradypodion) in an African biodiversity hotspot. Mol. Ecol. 15,
781–793.
Tolley, K.A., Townsend, T.M., Vences, M., 2013. Large-scale
phylogeny of chameleons suggests African origins and Eocene
J. Internat. 177, 1315–1333.
Trewick, S.A., 2000. Mitochondrial DNA sequences support
allozyme evidence for cryptic radiation of New Zealand
An early temperature-sensitive period for the plasticity of
segment number in the cinctiped Strigamia maritima. Evol. Dev.
12, 347–352.
White, F., 1978. The Afroamontane Region: in Biogeography and
Ecology of southern Africa Monographiae Biologicae 31. In:
Werger, M.J.A. (Ed.), Biogeography and Ecology of Southern
Africa. Springer Netherlands, The Hague, Netherlands, pp. 463–
560.
White, F., 1981. The history of the Afroamontane archipelago and
Willows-Munro, S., Matthee, C.A., 2011. Linking lineage
diversification to climate and habitat heterogeneity: phylogeography of the southern African shrew Myosorex varius.
Yang, Z., Rannala, B., 2010. Bayesian species delimitation using
multilocus sequence data. Proc. Nat. Acad. Sci. USA 107, 9264–
9269.
60, 747–761.