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Abstract

The homology of the arachnid chelicera with respect to other head appendages in Panarthropoda has long been debated. Gene
expression data and the re-interpretation of early transitional fossils have supported the homology of the deutocerebrum and its
associated appendages, implying a homology between primary antennae (mandibulates), chelicerae (euchelicerates), and
chelifores (sea spiders). Nevertheless, comparatively little is known about the mechanistic basis of proximo-distal (PD) axis
induction in chelicerates, much less the basis for cheliceral fate specification. Here, we describe a new cheliceral teratology in the
spider Tetragnatha versicolor Walckenaer, 1841, which consists on a duplication of the PD axis of the left chelicera associated
with a terminal secondary schistomely on the fang of the lower axis. This duplication offers clues as to potential shared
mechanisms of PD axis formation in the chelicera. We review the state of knowledge on PD axis induction mechanisms in
arthropods and identify elements of gene regulatory networks that are key for future functional experiments of appendage
development in non-insect model systems. Such investigations would allow a better understanding of PD axis induction of
modified and poorly studied arthropod limbs (e.g., chelicerae, chelifores, and ovigers).
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Introduction

The homology of the arachnid cheliceral segment (and sea
spider cheliforal segment) with respect to other head segments
in Panarthropoda was a historically contentious topic (Budd
2002; Maxmen et al. 2005; Brenneis et al. 2008). It was tra-
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ditionally thought that the midbrain of mandibulates (the
deutocerebrum, or the second part of the arthropod tripartite
brain) was absent in Chelicerata, and therefore, its associated
appendage was not present. This inference was based on the
anatomy of the chelicerate brain, namely, (1) the comparable
organization of the ganglion innervating the chelicerae to the
one on the tritocerebral ganglion in crustaceans and insects
(Weygoldt 1985); (2) the relative position of the cheliceral
ganglion with respect to the stomodeum; and (3) the location
of the post-esophageal commissure (Siewing 1963). This un-
derstanding was overturned by gene expression data from
different chelicerate taxa, such as spiders (Damen et al.
1998), mites (Telford and Thomas 1998), and sea spiders
(Jager et al. 2006). These works demonstrated that the
cheliceral/cheliforal segment of Chelicerata represented the
first appendage-bearing segment of the arthropod head that

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00427-021-00678-9&domain=pdf
http://orcid.org/0000-0003-1739-5830
https://orcid.org/0000-0002-0623-1622
https://orcid.org/0000-0002-2328-9084
mailto:darkocotoras@gmail.com

Dev Genes Evol

lacks Hox gene expression, comparable to the first antennal
segment of Mandibulata. This interpretation was additionally
supported by the investigation of chelicerate neuroanatomy in
horseshoe crabs (Mittmann and Scholtz 2003) and sea spiders
(Brenneis et al. 2008).

This revised homology of deutocerebral appendages has
prompted the re-interpretation of early transitional fossils
(Chen et al. 2004; Aria and Gaines 2015). Structures putative-
ly linking the antennae and the chelicerae as part of a single
transformational series include the antenniform chelicerae of
the Silurian synziphosurines Dibasterium durgae Briggs et al.
2012 and Offacolus kingi Orr et al. 2002 (Sutton et al. 2002;
Briggs et al. 2012; Sharma et al. 2013), as well as the multi-
flagellate and multi-chelate deutocerebral appendages of
groups like leanchoiliids (Megacheira, commonly known as
the great-appendage group; Chen et al. 2004; Aria and Gaines
2015; Setton et al. 2017). Nevertheless, the wide anatomical
and functional gulf between antenna and chelicera poses chal-
lenges from the perspective of developmental genetics and
homologizing regions of the proximo-distal (PD) axis in
deutocerebral appendages, by comparison to structures like
walking legs (Bruce and Patel 2020). This is partly attributable
to the evolutionary lability of spatiotemporal dynamics among
the genes that regionalize the PD axis (leg gap genes) across
phylogenetic scales, particularly for gnathal and sensory serial
homologs of walking legs (Prpic et al. 2003; Angelini and
Kaufman 2005). An additional complication is the retention
of numerous orthologs of developmental patterning genes
resulting from a shared whole-genome duplication in the com-
mon ancestor of Arachnopulmonata (Panscorpiones +
Tetrapulmonata; Schwager et al. 2017; Ontano et al. 2021),
resulting in the subdivision of expression and function of nu-
merous leg gap gene paralogs in the spider models often pri-
oritized as exemplars of Chelicerata in comparative develop-
mental studies (Prpic and Damen 2004; Pechmann and Prpic
2009; Turetzek et al. 2016; Gainett and Sharma 2020; Nolan
et al. 2020).

As a result, comparative functional investigations of
cheliceral segmentation and cheliceral fate specification
have been grounded in the harvestman Phalangium opilio
Linnaeus, 1758, which does not share the whole genome
duplication exhibited by arachnopulmonates. It was shown
in this model system that the chelicerae (like their mandib-
ulate counterpart, the deutocerebral antennae) share the
requirement of homothorax (hth) in the absence of Hox
input for specification of deutocerebral appendage identity
(Ronco et al. 2008; Sharma et al. 2015), further supporting
the homology of these appendage types. This is consistent
with expression dynamics of hth and DIl across
panarthropods, with non-antagonistic expression domains
between DI/ and the proximal patterning genes hth/
extradenticle (exd) common across deutocerebral append-
ages (Dong et al. 2002; Prpic and Damen 2004; Pechmann
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and Prpic 2009; Janssen et al. 2014; Sharma et al. 2012,
2015).

Beyond the role of 4th in specifying cheliceral identity,
as well as a separate role for the medial PD axis gene
dachshund (dac) in patterning the proximal segment in
groups with a plesiomorphic three-segmented chelicera
(Sharma et al. 2012, 2013; Nolan et al. 2020), little is
known about cheliceral fate specification, the genetic ba-
sis for the patterning of the chela, and more broadly, the
functional dynamics of PD axis patterning in Chelicerata.
A recent investigation of the distal antennal selector
spineless (ss) revealed that the antennal expression do-
main of this transcription factor is restricted to mandibu-
lates; ss does not appear to play any role in the patterning
of the distal chelicera (Setton et al. 2017). This data point
suggests that a role for ss in distal antennal fate specifi-
cation was acquired at the base of Mandibulata and not
earlier; the identity of cheliceral selector genes remains
unknown.

In the absence of developmental genetic data, one clue
to how structures are formed can be gleaned from the
investigation of naturally occurring teratologies. In con-
trast to insects, the number of documented naturally oc-
curring malformations in arachnids is rather limited. As it
relates to cheliceral patterning, an ideal study taxon is the
long-jawed orb-weaving spiders. Tetragnatha Menge,
1866 (Tetragnathidae) are characterized by large chelicer-
ac with a diverse arrangement of associated teeth, and
sometimes additional cusps on the respective fangs. This
degree of variation had made the tetragnathid chelicerae
taxonomically relevant, like in any other spider taxa
(Castanheira et al. 2019). Moreover, the structural com-
plexity of tetragnathid chelicerae provides reliable land-
marks for the identification of homologous structures.
Here, we describe a new cheliceral malformation pheno-
type on Tetragnatha versicolor Walckenaer, 1841 and re-
view its implications for cheliceral PD axis patterning.

Material and methods

The collection information of the examined specimen is
“USA: Pinecrest, CALIF. Tuolumne Co. VII-6-1947 19
Tetragnatha versicolor (det. D. Cotoras 2020).” It is deposited
at the California Academy of Sciences under accession num-
ber CASENT 9081591.

The specimen was originally in a vial with more than 20
other specimens (male, female, and juveniles) under the
identification of Tetragnatha laboriosa Hentz, 1850. Our
identification was corroborated using Levi (1981),
Alvarez-Padilla et al. (2009), and Alvarez-Padilla and
Hormiga (2011). Structure names follow Castanheira
et al. (2019).
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Results

The specimen was identified as 7. versicolor, contrary to the
original label indicating “T. laboriosa.” DNA sequencing of
other samples from the vial showed that it had a mix of
T. laboriosa and T. versicolor. The studied specimen was
not sequenced, so its identification was based on morphology.
In particular, the recognized traits which distinguished the
female 7. versicolor (Fig. 1a) from T. laboriosa were as fol-
lows: (1) in T. versicolor, lateral eyes are closer together than
median eyes, whereas in T. laboriosa, lateral eyes are usually
as far apart as the median eyes; (2) in 7. versicolor, there is an
outer cusp of the fang (OC), which is absent in 7. laboriosa;
(3) in T. versicolor, there is a guide tooth on the upper row
(Gu) followed by a diastema and then a series of teeth decreas-
ing in size (U), whereas in T. laboriosa, the most distal tooth
(corresponding by position with Gu) is not as differentiated
from the others; (4) in T. versicolor, the guide tooth on the
lower row (Gl) is closer to the other lower teeth (L), whereas
in T. laboriosa, there is a larger diastema to the remaining
teeth; and, finally, (5) 7. versicolor has proportionally more
elongated chelicerae than 7. laboriosa (Levi 1981). In addi-
tion, the specimen has dusky markings in the abdomen, which
is a character mentioned for 7. versicolor in a revision of the
group for North America (Levi 1981).

The specimen presents a duplication of the PD axis on the
left chelicera associated with a terminal secondary
schistomely on the fang of the lower axis (Figs. 1b and 2).
Each axis has the upper and lower rows of cheliceral teeth and
one fang. The upper axis has a relative configuration similar to
the wild type, which includes the orientation of the fang. By
contrast, the fang of the lower axis, which presents the termi-
nal secondary schistomely, is pointing in the opposite direc-
tion (outwards). The outer cusp (OC) is present in both fangs.
The guide tooth of the upper row (Gu) is present in the upper

Fig. 1 Female chelicerae, internal
view: a right chelicera (normal
phenotype), b left chelicera
(malformed phenotype). The
upper axis presents the normal
phenotype, while the lower axis
has a fang with a terminal
secondary schistomely. Note the
presence of two proximal extra
teeth between the upper and lower
rows of teeth on the lower axis.
eu, extra teeth; Gl, guide tooth on
the lower row; Gu, guide tooth on
the upper row; L, remaining teeth
from the lower row; OC, outer
cusp of the fang; U, remaining
teeth from the upper row

Fig. 2 Female left chelicera, external view (malformed phenotype). OC,
outer cusp of the fang; Gu, guide tooth on the upper row. The upper axis
presents the normal phenotype, while the lower axis has a fang with a
terminal secondary schistomely

axis, but absent in the lower one. Instead, there is a tooth
which does not have the characteristic size difference associ-
ated with the rest of the proximal teeth. In the most proximal
position in between the upper and lower rows of teeth of the
lower axis in the left chelicera, there are two extra teeth (eu)
(Fig. 1b).

Discussion

This study represents the first reported teratology in a
Tetragnatha spider and, to our knowledge, the first described
naturally occurring cheliceral axial duplication in an adult
specimen. The fact that it occurs in the presence of adult struc-
tures allows for a better interpretation of the observed dupli-
cation. Previous experimental studies of thermal alternation
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during embryonic development of Eratigena atrica (C. L.
Koch, 1843) (Agelenidae) resulted in a small portion of che-
licerae anomalies (Napiorkowska et al. 2016a). Among those
anomalies were bifurcated chelicerae with two fangs:
polymely, consisting of an additional chelicera; polymely with
simultaneous heterosymely, consisting of three fused chelic-
erae with their respective fangs on the same side of the body
(see Figs. 5-7 on Jacunski et al. 2004), and other deformities
with atypical chelicerae shapes that were difficult to interpret
(Napiorkowska et al. 2010; Jacunski et al. 2004). Regardless
of the similarity with some of those phenotypes, it is difficult
to associate what is observed in 7. versicolor with the same
cause.

The fact that the malformation presented here occurs in
only one of the chelicerae is congruent with previous experi-
mental evidence that shows independence between chelicerae
in the expression of teratological phenotypes (Jacunski et al.
2004). As the duplication occurs on the teeth rows and their
respective fang, both structures might correspond to a single
developmental module under the same regulatory mechanism,
probably associated with PD differentiation.

Given that Tetragnatha spiders capture their prey with a
web and not by ambush predation, it appears possible that an
individual with a suboptimal cheliceral structure might be able
to survive in the wild. The anatomical position of the upper
axis appears to be functional, as it is similar to the right che-
licera. Therefore, considering that this was an adult specimen,
it is possible that this malformation did not strongly affect its
capacity to survive. A different situation is the one regarding
reproduction, because a key step in the Tetragnatha copula-
tion process is the cheliceral lock between male and female.
This immobilization of the chelicerae prevents the female
from eating the male during mating (Simkovic and Andrade
2019). In all Tetragnatha species, the males even have dorsal
apophyses, which may facilitate the lock (Castanheira et al.
2019). We speculate that this double-fang condition might
have prevented any successful copulation.

The terminal secondary schistomely of the fang on the
lower axis in the malformation presented here is a phenotype
comparable to those reported in other taxa and appendages,
such as the terminal bifurcations described in myriapod legs
(Vega-Roman and Hugo-Ruiz 2015) and antennal bifurca-
tions in Xyletineurus bombycinus (Erichson, 1847)
(Coleoptera: Ptinidae) (Honour and Liier 2020). No spiders
are known to have bifurcated fangs, but several species in the
family Tetragnathidae possess short protrusions along the
fangs, such as the two inner cusps (IC) on the female of
Tetragnatha argentinensis Mello-Leitao (1931), or the chelic-
eral fang outgrowth (CFO) on several species of the genus
Glenognatha Simon, 1887 (Cabra-Garcia and Brescovit
2016; Castanheira et al. 2019). Those protruding structures
might be formed by some kind of main axis duplication or
“ramification” at a smaller scale, than what is presented here.
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To test this idea, more detailed studies on the determinants of
fang morphology are required.

Mechanisms of appendage axis duplication in
Arthropoda

Teratologies are fascinating phenomena from the perspective
of developmental biology, in that they provoke questions of
mechanism and process that led to those anomalies. Within
chelicerates, intriguing teratologies have spanned the number
and position of eyes (reviewed by Jimenez and Llinas 2002),
appendages (Juberthie 1968; Jacunski et al. 2002a, b; Scholtz
and Brenneis 2016; Napiorkowska and Templin 2017; Di
et al. 2018), reproductive organs (Izquierdo 2021), and
bicephaly (Mikulska and Jacunski 1970; Templin et al.
2009; Napiorkowska et al. 2016b). The last of these teratol-
ogies has received the most attention from the standpoint of
embryological and genetic investigations, as antero-posterior
axis duplication of this type is thought to be associated with
the incidence of an axis organizer. Indeed, seminal experi-
ments by Holm (1952) showed that a specific cell population
of the spider embryo, called the cumulus, acts as the axis
organizer. Grafts of this region from one embryo to another
are able to induce a secondary axis in the recipient. A coun-
terpart of this experiment in horseshoe crab embryos sug-
gested that the cumulus may be an ancient and phylogeneti-
cally widespread organizer (Itow et al. 1991). Detailed work
on the cell dynamics and genetics of this region of the embryo
in the past 20 years has linked secretion of Decapentaplegic
(Dpp) from the cumulus with axis-patterning activity in mul-
tiple spider species (Akiyama-Oda and Oda 2003; Oda et al.
2020; Pechmann 2020). Besides grafts of the cumulus, other
experimental approaches that can drive antero-posterior axis
duplication in chelicerates include fluctuations of humidity
(Buczek 2000) and temperature (Jacunski 1984; Juberthie
1962; Jacunski et al. 2002a, b; Napiorkowska et al. 2016a,
b; Napiorkowska and Templin 2018), chemical induction
(Itow and Sekiguchi 1979), and laser ablation (Oda et al.
2020).

By comparison to the dynamics of the cumulus and antero-
posterior axis patterning, little is known about the mechanisms
of limb PD axis duplication in chelicerates. Putative causes of
this phenotype can be divided into two groups: (1) an external
teratogen and (2) a malformation during development, molt,
or regeneration caused by an aberrant developmental process.
The possibility of an external teratogen is unlikely, as it would
require one with very localized action and without a wide-
spread environmental effect, as no other individuals with the
same phenotype were found in a vial corresponding to a 1-day
collection event with >20 samples in total. Without natural
history data on the embryogenesis and postembryonic devel-
opment of this specimen, we are unable to evaluate the possi-
bility of mechanical damage driving an axis bifurcation during
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development. Along the same line, a malformation due to a
failed regeneration process appears to be unlikely, as the che-
licerae in Tetragnatha are not known to regenerate.
Heterosymely (fusions of adjacent appendages) is known
to be linked to changes in temperature in multiple arachnid
orders (Juberthie 1968; Jacunski et al. 2002a, b;
Napiorkowska and Templin 2017), but temperature and hu-
midity changes are not causally linked to PD axis duplication.
A recent report on an ectopic leg in the sea spider
Pycnogonum litorale (Strom, 1762) offered some clues as to
causes of such duplications; in this case, the specimen
belonged to a captive-bred colony and was known to have
been damaged at the site of the ectopic leg’s induction in its
first juvenile stage (Scholtz and Brenneis 2016). It was in-
ferred that this anomaly was consistent with the boundary
model (Meinhardt 1986), wherein appendages develop at the
boundaries of two different cell populations (anterior and pos-
terior); mechanical damage causes displacement of a third
group of cells, causing juxtaposition of morphogens that con-
fer anterior, posterior, and ventral fate (the requirements of PD
axis induction) during regeneration. The result of this dis-
placement is the induction of a new appendage axis (Scholtz
and Brenneis 2016). The boundary model has garnered broad
support from developmental genetic data, principally through
functional studies of dpp, wingless (wg/Wnt-1), and their
downstream targets Sp6-9, Distal-less (DIl), and homothorax
(hth), in PD axis induction (reviewed by Estella etal. 2012). In
this regard, dpp and wg are thought to act in a manner com-
parable to Sonic hedgehog (Shh) signaling in the posterior

Fig. 3 Hypothesized mechanistic a
similarities in PD axis duplication

between chick forelimb and

spider chelicera. a Summary

representation of the classic ZPA

graft experiment which results in

mirror-image distal duplication of

the adult limb. b A hypothesized

developmental mechanism to

replicate the phenotype of chelic-

eral PD axis duplication observed

in this study. As in the chicken

graft experiment, this scenario

postulates the presence of an an-

alog of the ZPA in the proximal

region of the early developing

cheliceral limb bud. Note the b
chelicera diagram is rotated 90° to

the right with respect to the posi-

tion in Fig. 1b

Hypothetical
ZPA analog

limb bud of vertebrates. In a classic experiment, it was shown
that ectopic expression of Shh in the anterior limb bud of a
developing chick induces distal duplication of the PD axis;
modulating the timing and intensity of expression alters the
completeness of the duplication, with higher levels of Shh
ectopic expression inducing greater differentiation of the ec-
topic PD axis (Yang et al. 1997). This experiment is under-
stood to reflect the result of experimental grafts of the Zone of
Polarizing Activity (ZPA, an Shh-expression center) to the
anterior limb bud, which also results in distal axis bifurcation
(Saunders and Gasseling 1968; Tickle 2017). Comparable dy-
namics have demonstrably evolved in early axis patterning of
insects and cephalopod limbs as well (Tarazona etal. 2019). A
similar PD determination mechanism could be occurring on
the early cheliceral limb bud with the presence of a hypothet-
ical ZPA analog (Fig. 3). If this model were accurate, it is
predicted that graft experiments or implantation of Dpp- and
Wg-soaked beads could result in the cheliceral PD axis dupli-
cation, which would replicate the phenotype described here.
Functional data on PD axis specification and induction re-
main limited in Chelicerata. Investigations of Dpp signaling
have prioritized early embryogenesis in spiders (Akiyama-
Oda and Oda 2003, 2006); surprisingly, there are no function-
al data in chelicerates with respect to the role of dpp in ap-
pendage fate specification or appendage dorsoventral axis pat-
terning. Similarly, no functional data exist for arthropod wg
homologs outside of derived insects; Wnt8, the only Wnt path-
way member associated with a phenotype in an arachnid, has
only been implicated in the patterning of opisthosomal

Donor
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segments (McGregor et al. 2008). Recently, it was shown that
knockdown of the Wnt co-receptor arrow in the spider
Parasteatoda tepidariorum (C. L. Koch, 1841) (Theridiidae)
results in disrupted segmentation of the entire germ band and
loss of appendages (Setton and Sharma 2018, 2021); while
demonstrative of broader conservation of the Wnt pathway,
this data point does not narrow down the functions of specific
Whts in chelicerate appendage patterning. Additional candi-
dates that are associated with a distal bifurcation of the anten-
nal PD axis in Drosophila melanogaster Meigen, 1830 in-
clude Dip3 (extra antenna; duplication is achieved by
splitting of the antennal field or by homeotic transformation
of the eye disc; Duonga et al. 2008), Ath (ectopic expression
causes a duplication on the antennal PD axis; Yao et al. 1999),
obake (misexpression induces a mirror image duplication and
sometimes a triplication of the antenna; Dworkin et al. 2001),
CG17836/Xrpl (antennal duplication by the formation of an
additional PD axis by the CG17836/XrpI-dependent ectopic
induction of wg, dpp, and hedgehog (hh) in eye-antennal disc;
Tsurui-Nishimura et al. 2013), and eyK (eyeless strain; in ad-
dition to the eye size reduction, the loss-of-function phenotype
includes mirror image duplications of the antennae, either
separated or fused at the base; Sang and Burnet 1963).
Functional experiments in those genes which replicate the
here described phenotype could help to shed light on the de-
velopmental mechanisms of the PD determination of the
chelicerae.

Future experimental directions

Mutants and teratologies are useful tools for investigations of
developmental mechanisms. Given the established homology
of antennae and chelicerae, we present several potential mech-
anisms to account for the cheliceral axis duplication described
in T. versicolor, as targets for future investigations. The estab-
lishment of large-bodied spiders as new models amenable to a
broader swath of experimental approaches (Setton et al. 2019;
Pechmann 2020) offers the hope of a refined understanding of
PD axis duplications, as observed in the tetragnathid described
herein. As first steps to establishing mechanisms of axis in-
duction in any chelicerate, future investigations must adapt
bead implantation techniques in limb buds of mygalomorph
embryos to test the functions of Dpp, Wg, and Hedgehog in
appendage fate specification, with the prediction that artificial
co-induction of Dpp and Wg signals in the dorsal compart-
ment of the chelicerate limb bud can drive distal duplication of
the PD axis. In tandem with these approaches, laser ablation
experiments should be performed at later stages of develop-
ment (comparable to experiments by Oda et al. 2020), in order
to assess whether mechanical disruption of boundaries be-
tween morphogen gradients can be causally linked to distal
duplication of the PD axis (Scholtz and Brenneis 2016). A
better understanding of cheliceral axis patterning could shed
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light on the various adaptations of the chelicerae for different
modes of feeding and reproduction, as exemplified by
Tetragnathidae.
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