Evolution of a sensory cluster on the legs of Opiliones (Arachnida) informs multi-level phylogenetic relationships

GUILHERME GAINETT1,2,3,*, PRASHANT P. SHARMA2, NATHÁLIA FERNANDES3, RICARDO PINTO-DA-ROCHA3, GONZALO GIRIBET4,5 and RODRIGO HIRATA WILLEMART1,3,5

1Laboratório de Ecologia Sensorial e Comportamento de Artrópodes, Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Rua Arlindo Béttio, 1000, Ermelino Matarazzo, São Paulo, SP 03828-000, Brazil
2Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, USA
3Programa de Pós-Graduação em Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 321, Travessa 14, São Paulo, SP 05508-090, Brazil.
4Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, CAMBRIDGE, USA
5Programa de Pós-Graduação em Ecologia e Evolução, Universidade Federal de São Paulo, Campus Diadema, Rua Professor Artur Riedel, 275, Jardim Eldorado, Diadema, SP 09972-270, Brazil

Received 20 September 2018; revised 16 December 2018; accepted for publication 5 June 2019

Phylogenetic relationships in Opiliones (Arachnida) at the suborder level have greatly stabilized in recent years, largely due to advances in molecular systematics. Nonetheless, identifying morphological characters in the context of well-resolved phylogenies is essential for testing new systematic hypotheses and establishing diagnostic markers. Here, we investigate with SEM a promising character system across Opiliones: the sensilla on the distalmost article of legs I and II. We identified four discrete characters and scored species of nearly all families of Laniatores (28 families, 44 species), three Dyspnoi, two Eupnoi and two Cyphophthalmi. Using a phylogenetic backbone compiled from recent and ongoing phylogenomic studies, we trace the evolution of these sensilla using ancestral state reconstruction. We discover a widespread occurrence of three sensilla (a pair of sensilla basiconica and one hooded sensillum) on the anterior legs of all families of Laniatores studied, and that comparable structures occur in the other suborders of Opiliones. Our analysis shows that this sensory field provides diagnostic information at different levels of phylogenetic relationships. We discuss the implications of the widespread occurrence of these sensilla in Opiliones, which have recently been hypothesized as hygro-/thermoreceptors and their putative homology with tarsal organs in Arachnida.

INTRODUCTION

Harvestmen, arachnids of the order Opiliones, comprise four well-defined main lineages with considerable morphological disparity. The suborder Cyphophthalmi includes diminutive, inconspicuous animals (1–10 mm) popularly known as ‘mite-harvestmen’ (Giribet et al., 2012). Dyspnoi includes generally small, short-legged animals, with a characteristic pattern of fusion of opisthosomal tergites (Pinto-da-Rocha & Giribet, 2007). Eupnoi species range from short-legged forms, to the archetypal ‘daddy-long-legs’ (Pinto-da-Rocha & Giribet, 2007). The suborder Laniatores (‘armoured harvestmen’) includes sclerotized animals with
typically raptorial pedipalps and a remarkable diversity of armature (Sharma & Giribet, 2011). Phylogenetic studies, including the use of phylogenomic data, have corroborated Cyphophthalmi as sister group to the remaining extant orders (clade Phalangida) and the monophyly of Palpatores (Eupnoi+Dyspnoi) (Giribet et al., 2010). The result has been the recently settled and robustly supported Opiliones tree of life, with nearly complete sampling of all harvestman families in transcriptomic datasets (Hedin et al., 2012; Garwood et al., 2014; Sharma & Giribet, 2014; Fernández et al., 2017; Fig. 1).

Laniatores represent more than two-thirds of the described harvestman species, comprising ~30 families, depending on the classification scheme employed (Kury, 2013; Giribet & Sharma, 2015; Derkarabedian et al., 2018; Fig. 1). Relationships between the families and superfamilies have become better understood in recent years, due to the implementation of molecular phylogenetics (Giribet et al., 2010; Sharma & Giribet, 2011; Fernández et al., 2017; Derkarabedian et al., 2018). Due to the major systematic changes in higher-level classification of harvestmen in recent years (e.g. Sharma & Giribet, 2011; Groh & Giribet, 2015; Derkarabedian et al., 2018), it is imperative to identify morphological characters that are consistent with robustly recovered clades in molecular phylogenies, both for the purpose of testing newly proposed relationships and also for facilitating efficient identification of diverse harvestman groups (Sharma & Giribet, 2011; Kury, 2014; Pinto-da-Rocha et al., 2014; Kury & Villarreal, 2015).

In Arthropoda, the employment of sensillar occurrence and distribution as diagnostic characters (chaetotaxy) is a common practice that yields synapomorphies at different levels of relationships, from generic to higher groups (e.g. Insecta: Brozek & Zettel, 2014; ‘Crustacea’: Karanovic & Kim, 2014; Arachnida: Tomasiewicz & Framenau, 2005; Botero-Trujillo & Flórez, 2011; Platnick et al., 2012). In Opiliones, various cuticular structures have been suggested as promising for systematics, such as microstructure of the integument (Murphree, 1988; Rodriguez et al., 2014a, 2014b), glanular openings (Willemart & Giribet, 2010; Gainett et al., 2014; Rodriguez & Townsend, 2015) and sensillar distribution and morphology (Willemart & Giribet, 2010; Gainett et al., 2014; Kury & Villarreal, 2015; Townsend et al., 2015; Wolff et al., 2016). While appendicular characters generally seem to be a promising source of characters (Gainett et al., 2014), the diagnostic potential of tarsal sensilla in a systematic context has not been investigated heretofore under a phylogenetic framework.

The tarsi (terminal podomere (true segment)) of the legs of harvestmen concentrate most sensillar units, often on specific tarsomeres (the subdivisions of the tarsus). In the case of Laniatores, legs I and II are used as sensory legs, and their tarsi have higher density and diversity of sensory structures (Willemart & Gnaspinii, 2003; Willemart et al., 2009; Gainett et al., 2017a). Willemart et al. (2007) first described a pair of sensilla basiconica on the distalmost tarsomeres I and II of Iporangaia pastulosa (Mello-Leitão, 1935) and Neosadocus maximus (Gilray, 1928) (Laniatores, Gonyloptidae), inserted ‘on an irregular depression of the cuticle’. Gainett et al. (2017b) then described a third sensillum on this irregular depression, the hooded sensillum, always distal to the pair of sensilla basiconica. A preliminary survey on the diverse family Gonyloptidae showed that these sensillar units were conserved in position and morphology in these legs, suggesting them as a source of new morphological characters.

We therefore searched for similar structures occurring on the corresponding region of the distalmost tarsomers I and II of species in other laniatorean families to investigate the phylogenetic distribution of the triad (hooded sensillum and pair of sensilla basiconica). Additionally, we sampled the corresponding region on representatives of the suborders Dyspnoi, Eupnoi and Cyphophthalmi and optimized all surveyed data on a modern phylogeny of Opiliones.

MATERIAL AND METHODS

SPECIES SAMPLING

Specimens were obtained from the Invertebrate Zoology collection at the Museum of Comparative Zoology (Harvard University, USA) and the Museu de Zoologia da Universidade de São Paulo (Brazil). We sampled the tarsi I and II of 44 species representatives of 28 families of Laniatores (60 individuals), three Dyspnoi, two Eupnoi and two Cyphophthalmi. Absence of the studied structures in tarsi III and IV for some laniatorean species was inferred from the SEM data generated by Gainett et al. (2014) and the study of the laniatorean Heteromitobates discolor Sørensen, 1884 (Gainett et al., 2017a, b). All SEM data of aforementioned projects and of the present study are publicly available at the MCZ database (mcz-base.mcz.harvard.edu) and upon request. The list of specimens examined is provided in Supporting Information, File S1. Additional media can be accessed in the MCZ database (mcz-base.mcz.harvard.edu).

Scanning electron microscopy

Tarsi were cut with micro-scissors and submitted to three rounds of ultrasound cleaning (Branson 200): in distilled water, in a 1:10 detergent solution (Alconox) and in distilled water again. The duration of each round was determined empirically. Most specimens were critical point dried (Tousimis 931 GL), being dehydrated in graded ethanol series. Otherwise, they were immersed in 100% acetone and then air dried. Samples were mounted on stubs with carbon adhesive tabs (Electron Microscopy Science, Hatfield, PA, US) and sputter coated with Pt-Pd targets (EMS 300T D Dual Head Sputter Coater). Photographs were taken using a Zeiss Ultra-Plus FESEM or a Zeiss Supra FESEM (field emission scanning electron microscope) at the Center for Nanoscale Systems (Harvard

Figure 1. Classification of Opiliones, showing the most supported hypothesis of relationship among the suborders Cyphophthalmi, Eupnoi, Dyspnoi and Laniatores and relationships between the families used in this study. Compiled phylogeny is based on Giribet & Sharma (2015), with updated relationships of most inclusive clades of Laniatores, after a transcriptome-based phylogeny by Fernández et al. (2017). Families under 'Gonyleptidae' are s.l., because Gonyleptidae is broadly defined to include Cranainae and Manaosbiiniae in the newly proposed hypothesis.
University) or in a Zeiss DSM 940 at Instituto de Biociências (Universidade de São Paulo).

Coding, ancestral state reconstruction and tests of phylogenetic signal
Characters and character states were proposed following a reductive coding scheme to explore the informativeness of the hierarchical variation observed in less inclusive clades (Strong & Lipscomb, 1999; Brazeau, 2011). Ancestral state reconstructions were performed in MESQUITE v.3.31 (Maddison & Maddison, 2011) under equal weights parsimony and under maximum likelihood using a one-parameter Markov model (Supporting Information, File S4). The tree topology used was a compiled phylogeny of Opiliones based on Giribet & Sharma (2015), with updated relationships of most inclusive clades of Laniatores, after the phylogenomic analysis of Fernández et al. (2017) and Derkarabetian et al. (2018) (Fig. 1). The main outcomes of adding the data of Fernández et al. (2017) were in Laniatores, with (1) the reinstatement of Insidiatores as the monophyletic sister group to Grassatores and (2) the placement of the family Sandokanidae as part of a grade with Phalangodidae at the root of Grassatores (Fig. 1). In ambiguous optimizations, we did not favour specific transformation schemes, discussing both ACCTRAN and DELTRAN reconstructions.

A permutation tail probability (PTP) analysis (Faith & Cranston, 1991) was performed to test the phylogenetic signal of each character using MESQUITE v.3.31 (Maddison & Maddison, 2011). The PTP value may be interpreted as the probability of obtaining a tree of a given length under a null model of random character evolution (Faith & Cranston, 1991). Character states in each character were randomly shuffled 500 times and tree lengths mapped onto the original tree topology (see above). The resulting null distributions of tree lengths were compared to the empirical character cost, with a cut-off left tail of 0.05. A low PTP value (PTP < 0.05) indicates a highly structured character state distribution and phylogenetic signal.

RESULTS
MORPHOLOGICAL SURVEY USING SCANNING ELECTRON MICROSCOPY
Laniatores
All investigated species of Laniatores, in 28 families, possess three distinct sensilla on the distal-third end of the distalmost tarsomere of leg pairs I and II, roughly aligned along the sagittal axis (Fig. 2). The only exception is Sandokan truncatus Thorell, 1891 (Sandokanidae), in which only the distal sensillum was clearly identified in the corresponding position. The distal sensillum has been termed the ‘hooded sensillum’ (Gainett et al., 2017b) and the mid and proximal sensilla have been termed ‘sensilla basiconica’ (after Willemart et al., 2007, 2009). Below, we describe the variation observed in the morphology and topology of these three sensilla on the distalmost tarsomeres I and II.

Distal sensillum: hooded sensillum
In all species studied, for both males and females (15 species), the hooded sensillum was sexually monomorphic. Moreover, no difference in shaft morphology was detected between legs I and II. The hooded sensillum is inserted dorsally to dorsolaterally on the tarsi (Fig. 2), in a flat and oval-shaped membrane (Fig. 3B–D). The membrane has no protuberance, which is different from the socket of surrounding sensilla chaetica (see Fig. 3B for comparison with sensillum chaeticum). The seta wall bears continuous longitudinal grooves along the shaft (Figs 4–6). The basal portion of the shaft is much wider than the apex, tapering gradually (Figs 2–6). The hooded sensillum is always longer than the sensilla basiconica (Figs 2, 3). In Ereboraster flavescens flavescens Cope, 1872 (Travuniidae) it appears to be the longest seta in the distalmost tarsomere (Fig. 2A). The apical portion has the shape of a hood, with variation in the length and shape of the hood between groups. One of the sides of the hood is morphologically similar to the rest of the shaft, bearing grooves (Figs 4B, D, H, L, 5B). The opposite side has an oval, subapical concavity with a smooth surface, with a pore-like structure that frequently appears clogged with some material (Figs 4A, C, E, G, I, J, K, M, 5A, C, E, 6C, E). Some samples appear to have two pore-like structures, the most distal one being smaller in diameter (Figs 4A, 5A, E), but in the majority of samples only one was seen (Fig. 4C, G, I). This difference might be an artefact, probably due to clogging of the pore by dirt particles. Three types of hood morphology can be recognized: terminal swelling, with no tapering after the swollen region (spoon-shaped) (Fig. 4E, L, M); subterminal swelling, with tapering after the swollen region (‘death’s hood’ shape) (Figs 4A, B, C, F, G, K, 5A–E, 6B–E); and gradual tapering, with no swelling (Fig. 4H–J; Supporting Information, File S2).

Mid and proximal sensilla: sensilla basiconica
Two sensilla basiconica occur proximal to the distal sensillum (hooded sensillum), which we refer to as the mid and proximal sensilla (numbers 2 and 3 in
In all species studied for males and females (15 species), they were sexually monomorphic. The mid sensillum is always longer than the proximal one, both of these being shorter than the distal-hooded sensillum (Figs 2, 3). They are inserted in a flat articulation membrane, with no prominent socket. Although first described in two gonyleptid species as being short and conical (Willemart et al., 2007), there is variation in length in Laniatores. Sensilla basiconica can be peg-like (Fig. 3A, D) or elongated (Figs 3B, 6A), but they are generally the shortest seta in this region of the tarsus (Fig. 2). The shaft appears smooth in most species, but some ridges are present in the basal portion of the shaft wall in Synthemonychia glacialis Forster, 1954 (Synthemonychiidae; Fig. 6A), a feature that is possibly an artefact of the drying process. No wall pores were detected on the shaft wall. A ubiquitous feature is the apical portion with an opening to the exterior by means of a longitudinal slit that results in two terminal flaps (Fig. 3A, B). The slit-segment of the shaft occupies approximately the distal third of the shaft (Fig. 3A, B). We detected no differences in shaft morphology between leg pairs I and II.

Figure 2. Laniatores. Triad on the sensory field formed by two sensilla basiconica (proximal and middle sensilla) and one hooded sensillum (distal sensillum) (dotted area) on the distalmost tarsomeres I of selected families. A, Erebomaster flavescens flavescens (Travuniidae), undetermined sex. B, Remyus sp. (Phalangodidae), female. C, Pseudoepedanus doiensis (Epedanidae), male. D, Avima octomaculata (Agoristenidae), male. E, Heteromitobates discolor (Gonyleptidae), male. F, Stygnomma bispinatum (Stygnnommatidae), male.
In most species, the two sensilla basiconica are inserted in the same articulation membrane, with no cuticular-polygon lines in between the two shafts (Fig. 3A, B; Supporting Information, File S2). In some species they can be inserted individually, with cuticular-polygon lines in between them (Fig. 3D). We also observed species in which the two sensilla basiconica and the hooded sensillum shared the same articulation membrane (Fig. 3C). Therefore, three conformations occur in Laniaotores: (1) the proximal and mid shafts with articulation membranes fused, separated from the distal shaft; (2) the three sensilla with isolated articulation membranes; and (3) all three shafts with articulation membranes fused. Except one species of the family Agoristenidae (Avima octomaculata Roewer, 1963) and one Nomoclastidae species (Poassa limbata Roewer, 1943), the articulation membrane configuration is generally the same in legs I and II. In these two species, leg II has the three shafts separated (2), but leg I has two sensilla basiconica clustered (1; in Agoristenidae) or sensilla basiconica and hooded sensillum clustered (3; in Nomoclastidae). In Sandokan truncatus (Sandokanidae) several putative sensilla basiconica occur on the tarsi, but they do not show the typical slit opening and are sparsely distributed on the dorsal surface of the tarsomere (not shown; see Gainett et al., 2018).

Dyspnoi

The three species of Dyspnoi studied show three sensilla aligned along the sagittal axis in a corresponding position as Laniaotores, on the distalmost tarsomeres of legs I and II. The three sensilla differ from the surrounding sensilla chaetica and trichomes by having a flat articulation membrane (Figs 7, 8). The proximal two sensilla are short and conical, being also termed sensilla basiconica. The distal sensillum has a very similar morphology to the hooded sensillum in Laniaotores and, therefore, we refer to it using the same name.
The hooded sensillum is longer than both sensilla basiconica (Figs 7A, C, 8A, D). The shaft has longitudinal ridges and gradually tapers into a fine tip (Figs 7C, 8A). The apical portion has two pore-like structures in a region without ridges, but shows no subterminal swelling (see Ps in Figs 7D, 8D). The distal pore-like structure is smaller than the proximal (Fig. 8A). The side opposite to the pore-like structures is similar to the rest of the shaft, with ridges.

The sensilla basiconica are thin pegs, being the shortest sensilla in the tarsomere (Figs 7A, B, 8A–C). The proximal sensillum in Anelasmococephalus sp. (Trogulidae) is shorter than the mid sensillum, both being shorter than the distal-hooded sensillum (Fig. 8A), but in the other species we could not access their relative length. The shaft is bent forward in its mid portion, in an angle of almost 90° (Figs 7B, 8A–C). Apically, it bears a subterminal pore with a short slit, which faces down in Nemastoma bimaculatum Fabricius, 1775 (Nemastomatidae) (Fig. 7A, B) or up in Anelasmococephalus sp. (Fig. 8A–C). The slit apparently does not divide the shaft into two flaps as
in Laniatores. We observed no articulation membrane fusion between the three sensilla and three shafts are more interspaced than in Laniatores (Figs 7A, 8A).

Eupnoi

Tarsi I and II of Eupnoi species also have three sensilla with short conic shafts and flat articulation membranes in the same corresponding position as Laniatores, which we refer to as sensilla basiconica. These structures differ from the ones in Laniatores in their disposition and morphology of the shaft opening. In the unidentified phalangiid species (Eupnoi, Phalangiidae), both legs I and II have a triad of sensilla basiconica in the distal third of the tarsomere (Fig. 9A–D). In its proximal third, the dorsal surface of the last tarsomere also has two and four additional isolated sensilla basiconica on legs I and II, respectively (Fig. 9A). In *Astrobunus grallator* (Sclerosomatidae), a similar triad of sensilla basiconica occurs in the distal third of legs I, but legs II have only isolated sensilla basiconica in a dorsal position, totalling seven. Legs I also have two isolated sensilla basiconica (Fig. 10A, B) in the proximal third of the tarsomere and thus the total number in the tarsomere is five sensilla. The apical portion of the sensilla basiconica of the unidentified phalangiid has a pore-like structure (Fig. 9B–D), while in *A. grallator* there is a pore opening with a slit below it (Fig. 10C). This second condition is similar to the morphology observed in *Anelasmacephalus* sp. (Dyspnoi, Fig. 8C). Even though the three shafts in the triad are similar in shape, the three shafts are progressively longer in the unidentified species (Phalangiidae), with the most distal being the longest and thickest (Fig. 9C, D). In *A. grallator* the three shafts have a similar length (Fig. 10C).

Cyphophthalmi

The distal third of the last tarsomeres of legs I and II of the cyphophthalmid species studied show a structure termed the subapical process (Fig. 11). *Juberthie* (1979, 1988, 2000) first described the subapical process, which occurs isolated on the distal third of tarsomeres I and II only, of males and females of some Cyphophthalmi species. *Willemart & Giribet* (2010) later found this structure to be widespread in Cyphophthalmi. Our investigation of two Cyphophthalmi species, belonging to one family each (Troglosironidae and Pettalidae), confirms the occurrence of this structure in the corresponding position of the hooded sensillum and sensilla basiconica found in the other suborders. In the species here investigated, this single sensillum occurs among other types of sensilla (solenidia, sensilla chaetica), but no short and conic sensilla, such as sensillum basiconicum, is present in the tarsomere (Fig. 11A). The shaft is wide at the base (~6.5 µm) and tapers to a fine rounded tip (Fig. 11C), possessing a high density of longitudinal ridges (Fig. 11B, inset). The apical portion has no subterminal swelling and no pore-like structures.
In the previous section, we described the comparative incidence of sensilla with external morphological similarities in the shaft and articulation membrane, with a restricted distribution to the distal third of the distalmost tarsomeres of legs I and II of representatives of all suborders of Opiliones. In order to understand the variation in Phalangida (Eupnoi+Dyspnoi+Laniatores), we established morphological characters and hypothesized, based on position and morphological similarity, that the subapical process of Cyphophthalmi is homologous to the hooded sensillum of Phalangida.

This conserved sensory field shows variation in the association of the articulation membrane between the shafts, composition of sensillar types and shaft morphology. In order to trace how this sensory field has been modified across Opiliones evolution, we propose the following characters and character states:

Character 1: Sensory cluster, number of sensilla. States: (1a) one, (1b) three.

Character 2: Sensory cluster, articulation membrane configuration. States: (2a) distal, mid and proximal sensilla not fused (notation: ‘1 2 3’); (2b) distal sensillum isolated, mid and proximal sensilla fused (notation: ‘1 (2 3)’); (2c) distal, mid and proximal sensilla fused (notation: ‘(1 2 3)’).

Character 3: Hooded sensilla, hood morphology. States: (3a) terminal swelling (spoon-shaped), (3b) sub-terminal swelling (‘death’s hood’), (3c) no swelling (regular).

Character 4: Mid and proximal sensilla, apical opening: (4a) pore-like, (4b) complete slit.

Supporting Information, File S2 contains the list of features organized by characters and character states for all species studied. States
listed are representative of the morphology of leg pairs I and II, unless otherwise stated in the few cases of serial polymorphisms observed. In *Avima octomaculata* Agoristenidae (Laniatores), *Poassa limbata* (Laniatores, Nomoclastidae) and *Astrobunus grallator* (Eupnoi, Sclerosomatidae) legs I and II have different character states (for character 2). Apart from that, species in which we could access the character in both legs always showed the same character state and morphology (27 species). In order to ensure comparability, we chose to code leg pair I for our analysis. For eight species in which legs I could not be accessed properly for character 2, the sensilla on leg pair II was used as proxy for coding leg pair I (species marked with asterisk in Supporting Information, File S2).

Ancestral state reconstruction

Variation in the number of sensilla composing the sensory field (distal-third regions of the distalmost tarsomeres of legs I and II) (character 1) has two equally parsimonious optimizations (cost = 2; PTP < 0.05; mean: 2.97; median: 3): either having one sensillum (1a, white) is the ancestral state of Opiliones, which has increased to three sensilla (1b, black) in Phalangida (Eupnoi+Dyspnoi+Laniatores); or having three sensilla is the ancestral state of Opiliones (1b, black), which has become secondarily reduced to one sensillum (1a, white) in Cyphophthalmi (Fig. 12). Reversion from three (1b, black) to one sensillum (1a, white) is unambiguously recovered in the laniatorean family Sandokanidae (*Sandokan truncatus*) (Fig. 12).

Association between the articulation membranes of the three sensilla (character 2) is inapplicable for Cyphophthalmi species and ambiguous for the most recent common ancestor of Phalangida and Palpatores (Fig. 13). The ancestral state in Laniatores is recovered as ‘1 (2 3)’. Several transformations occur in the equally parsimonious reconstructions (cost = 9; PTP < 0.05; mean: 18.69; median: 19), with ambiguous ancestral states in most cases. The character state, all sensilla fused (2c, black), occurs independently is some families of Laniatores (Podoctidae, Stygnommatidae, Biantidae and Agoristenidae) and is recovered as the ancestral character state for the Gonyleptoidea clade that excludes Stygnopsidae, Agoristenidae and Stygnidae (Fig. 13). Three separated sensilla (2a, white) were
Character 3 concerns the tip of the distal sensillum with hood morphology, which is a condition that is not directly applicable in Cyphophthalmi and Eupnoi, acquired independently in Dyspnoi and a clade inside the laniatorean superfamily Gonyleptoidea (Metasarcidae+Cometidae+Gonyleptidae) (Fig. 13).
since the distalmost sensillum in Cyphophthalmi apparently has no pore and in Eupnoi the pore is not subterminal. Therefore, coding encompasses the comparable hood morphology observed in Dyspnoi and Laniatores only. Character 3 has undergone several changes in the phylogeny and is ambiguously optimized (cost = 8; PTP < 0.05; mean: 11.91; median: 12). In the clade Grassatores, five transformation events are unambiguous (Fig. 14). Terminal swelling (3a, white) has independently evolved from subterminal swelling (3b, green) in the laniatorean families Podoctidae, Biantidae and Guasiniidae. No swelling (3c, black) has independently evolved two times: in the family Stygnopsidae (Gonyleptoidea) and in a clade inside Gonyleptoidea including the families Metasarcidae, Cosmetidae and two Gonyleptidae (Fig. 14).

Finally, the type of apical opening of the mid and proximal sensilla (character 4, inapplicable for Cyphophthalmi) is ambiguously reconstructed in Phalangida (cost = 1; PTP < 0.05; mean: 4.91; median: 5) (Fig. 15), but having a pore-like opening (4a, white) is clearly ancestral for Palpatores (Eupnoi+Dyspnoi), whereas having a complete slit (4b) is unambiguously ancestral for Laniatores.

Ancestral state reconstructions under maximum likelihood using a one-parameter Markov model yielded virtually identical ancestral states for all nodes (Supporting Information, File S4).

DISCUSSION

THE TRIAD IN LANIATORES, DYSNOI, EUINOI AND CYPHOPHTHALMI

We show that hooded sensillum and a pair of sensilla basiconica on the sensory appendages are morphologically conserved across Laniatores. The triad shows four marked characteristics in Laniatores: (1) occurrence on the distal third of the distalmost tarsomeres in legs I and II, dorsally; (2) distal sensillum externally different from mid and proximal sensilla; (3) an increasing length of the sensillar shafts, from proximal to distal; and (4) distal sensillum (hooded sensillum) occurring only on this region of leg pairs I and II. We assumed a topographic/positional homology and used these four characteristics as criteria for homology of comparable structures across Opiliones. We discuss the remaining three suborders in turn.

The Dyspnoi species here investigated meet all four criteria. The distal sensillum in Dyspnoi has remarkable similarity with the external morphology of laniatorean hooded sensillum, having a hood with two pore-like openings (compare Figs 7, 8 to Figs 4, 5).

In Eupnoi, at least criteria 1, 3 and 4 are met (Figs 9, 10). We did not investigate in detail the morphology of each sensillum in the triad, so we provisionally interpret them as the same type of sensillum, leaving criterion 2 to be investigated in the future. In the Phalangiidae
species, the three shafts have an increasing length, which follows criteria 3 of Laniatores (Figs 9, 10). Even though sensilla basiconica occur in other body regions in Eupnoi species (Willemart et al., 2009; Wijnhoven, 2013), the triad (or ‘trident’, sensu Wijnhoven, 2013) occurs only on legs I and II (unidentified Phalangiidae; Fig. 9) or only on legs I (Astrobunus grallator, Sclerosomatidae; Fig. 10), meeting our criterion 4.

Cyphophthalmi show no sensilla basiconica (see also: Willemart & Giribet, 2010) and have a subapical process, a bottle-shaped sensillum on the distal third of the tarsi of pair of legs I and II only (Fig. 11; Juberthie, 1979, 1988, 2000; Willemart & Giribet, 2010). Since sensilla basiconica do not occur in this group, criteria 2 and 3 are inapplicable. Nevertheless, the positional criterion (1) and the characteristic occurrence on the sensory appendages (2) support our hypothesis that the subapical process is homologous to what is observed in the corresponding position of other suborders. Since no sensilla basiconica occur, we assume, under positional homology, that the subapical process corresponds to the distal sensillum of the triad in Eupnoi, Dyspnoi and Laniatores.

Given this positional/topographic congruence and the list of similarities, we find it reasonable to trace a correspondence between these structures and consider it to be a conserved sensory field in the sensory appendages of all Opiliones, an idea further supported by the available ultrastructural information on a laniatorean species (Gainett et al., 2017b; also see below).

The morphology of the triad informs different phylogenetic levels

Using a supertree phylogeny of Opiliones, we conducted an ancestral state reconstruction to test the homology of these structures and to investigate how specific character states have been modified during harvestman diversification. We recognize the variation observed as belonging to four discrete characters, pertaining to number of sensilla (character 1), association of articulation membranes (character 2), shape of the hood (character 3) and shape of the apical portion of mid and proximal sensilla (character 4). These characters display different degrees of homoplasy, but all exhibit high phylogenetic structure, as inferred from the low values of the permutation tail probability test (PTP < 0.05). Below, we address the contribution of each character at different levels of the Opiliones phylogeny, with emphasis on Laniatores.

Ordinal and supra-ordinal level

Modification of the number of sensilla in the cluster is an event that occurred early in Opiliones, but given the difficulty in comparing the character states with the divergent morphology of outgroup orders, the ancestral state of Opiliones is untested for this character. At shallow taxonomic levels, this character is mostly invariable, as observed in Laniatores. Despite this ambiguity, the disposition of this character state mirrors the early split of Cyphophthalmi and Phalangida, with either a reduction to a single shaft in Cyphophthalmi, or transition to three shafts in Phalangida. The same reasoning applies to the variation in the apical opening of the mid and proximal sensilla in Phalangida: pore-like opening and complete slit opening are, respectively, characteristics of

Figure 11. Cyphophthalmi. Aoraki longitarsa (Pettalidae), male. A, frontal view of the tarsi II, showing the subapical process. B, frontal view of the subapical process. Insight: detail of the shaft’s wall, showing longitudinal ridges. C, detail of the tip of the subapical process in ‘b’. Cw: claw; double arrowhead: subapical process.
Figure 12. Ancestral state reconstruction of character (1) number of sensilla on a compiled phylogeny of Opiliones after Giribet & Sharma (2015) and Fernández et al. (2017). White: (1a) one. Black: (1b) three. Branches with more than one colour represent equally parsimonious reconstructions.
Figure 13. Ancestral state reconstruction of ‘character (2) articulation membrane association’ on the same topology as in Figure 12. White: (2a) distal, middle and proximal sensilla not fused. Green: (2b) distal sensillum isolated, middle and proximal sensilla fused. Black: (2c) distal, mid and proximal sensilla fused. Branches with more than one colour represent equally parsimonious reconstructions. This character is not applicable to the terminals in Cyphophthalmi, and coding is unclear for Sandokanidae (Laniatores). Other terminals with grey branches are missing data.
Figure 14. Ancestral state reconstruction of ‘character (3) hooded sensilla, hood morphology’ on the same topology as in Figure 13. White: (3a) terminal swelling (spoon-shaped). Green: (3b) sub-terminal swelling (‘death’s hood’). Black: (3c) no swelling (regular). Branches with more than one colour represent equally parsimonious reconstructions. This character is not applicable to the terminals in Cyphophthalmi and Eupnoi. Other terminals with grey branches are missing data.
Figure 15. Ancestral state reconstruction of ‘character (4) middle and proximal sensilla, apical opening’ on the same topology as in Figure 14. White: (4a) pore-like. Black: (4b) complete slit. Branches with more than one colour represent equally parsimonious reconstructions. This character is not applicable to the terminals in Cyphophthalmi and is unclear for Sandoganidae (Laniatores). Other terminals with grey branches are missing data.
Palpatores and Laniatores. Ambiguity in the ancestral state of this character in Phalangida could possibly be resolved in future surveys with a denser sampling of Eupnoi and Dyspnoi. Specifically, studying the triad in a member of Acropsopilionidae could help refine the character states in the basal split of Dyspnoi, whereas studying the triad in Caddidae would be key to understand the evolution of this character in Eupnoi.

Superfamilial level

Gonyleptoidea is the largest superfamily of Laniatores, including the second most diverse harvestman family, Gonyleptidae (Caetano & Machado, 2013; Pinto-da-Rocha et al., 2014). Relationships in Gonyleptoidea have been addressed extensively using molecular markers (Sharma & Giribet, 2011; Pinto-da-Rocha et al., 2014; Fernández et al., 2017). Considerable changes in the topology have been made since the first cladistic hypothesis by Kury (1993), such as the erection of the families Cryptogeobiidae (Kury, 2014), Gerdesiidae (Bragagnolo et al., 2015) and Metasarcidae (Benedetti, 2012; Pinto-da-Rocha et al., 2014).

A condition with all three sensilla separated (2a, white) is synapomorphic for some families in the superfamly Gonyleptoidea, namely, Gonyleptidae (including Manaosbiinae and Cranainae), Comestidae and Metasarcidae [Microsetata sensu Kury (2014)]. This group has been recovered in molecular phylogenetic analyses of Gonyleptoidea with high support and nodal stability (Pinto-da-Rocha et al., 2014) and morphologically it is supported by the presence of a conspicuous covering of microsetae on the penis (Kury, 2014). A relationship between these families is substantiated by the shared condition of a hooded sensillum without swelling (character 3, character state 3c, black), which is recovered as an unambiguous synapomorphy of this clade.

Nonetheless, a true Nomoclastidae was not included in the analysis of Pinto-da-Rocha (2014) and other phylogenetic studies have either not included Metasarcidae (Giribet et al., 2010; Sharma & Giribet, 2011) or excluded both families (Sharma & Giribet, 2014; Fernández et al., 2017). However, an unpublished phylogenomic analysis sampling Microsetata and Nomolastidae recovers the family Nomoclastidae as sister group to Gonyleptidae and both families as sister to the clade Cosmetidae+Metasarcidae (R. Pinto-da Rocha, G. Giribet, pers. comm.), thus rendering Microsetata paraphyletic. To accommodate this forthcoming tree topology, a separate family of analyses was conducted herein with the same character states and terminals, but with an updated phylogenetic hypothesis. Under this new hypothesis, the ancestral state of the clade Cosmetidae+Metasarcidae+Nomoclastidae+Gonyleptidae becomes ambiguously optimized, given the character state of Poassa limbata (Nomoclastidae) (2c, ‘(1 2 3)’) (Supporting Information, File S3). It is worth noting that the species of Nomoclastidae sampled here is one of the few families that present serial dimorphism for character 2: leg I has all three sensilla fused, whereas leg II has the condition present in the other three families (namely, with all three sensilla separated). Therefore, sampling additional nomoclastids for character 2 could potentially elucidate the diagnosis of the superfamilial relationships of these four families.

Familial level

In Laniatores, the loss of two sensilla basiconica associated with the hooded sensillum (character 1, character state 1a, white) is a condition exclusively found in Sandokan truncatus (Sandokanidae) (Fig. 12). The placement of this family in the Laniatores phylogeny remained elusive in recent attempts to reconstruct its history (Schwendinger, 2007; Sharma & Giribet, 2009, 2011; Giribet et al., 2010), but a transcriptome-based approach has recovered it as a basally branching Grassatores (Fig. 1; Fernández et al., 2017). Sandokanids have several morphological autapomorphies, such as the complete fusion of the carapace and opisthosomal tergites (scutum complectum, a condition also present in cyphophthalmids) and reduced or undivided tarsomeres (Schwendinger, 2007, Sharma & Giribet, 2009; Gainett et al., 2018). This is also the only Laniatores family lacking the metatarsal paired slits, a synapomorphic slit sense organ for the suborder (Gainett et al., 2014). It should be noted that even though a triad is not observed in sandokanids, they have putative sensilla basiconica on tarsi I and II and in other regions of the body, as in other Laniatores. The tip of these sensilla show a series of vertical pore openings instead of the complete slit typical of Laniatores (Gainett et al., 2014, 2018).

Three sensilla sharing the same articulation membrane (character 2, character state 2c, black) have been independently acquired in the laniatorean species studied of the families Podoctidae, Stygnommatidae, Biantidae and Cryptogeobiidae, although ambiguous optimization does not resolve whether the character states in Stygnommatidae and Biantidae are homologous. The association of the three shafts in Cryptogeobiidae is interesting, because this group was previously considered as part of the subfamily Tricommatinae in the family Gonyleptidae (Pinto-da-Rocha & Giribet, 2007; Kury, 2014). Therefore, the autapomorphic condition in Cryptogeobiidae is in accordance with the recent erection of this family as a group outside Gonyleptidae (Kury, 2014; Pinto-da Rocha et al., 2014); with the later family having all three shafts separated (character state 2a).
The shape of the hood of the hooded sensillum as a terminal swelling (3a, white) was independently acquired in Podoctidae, Biantidae, Guasinidae and Phalangodidae. Testing if these character states are diagnostic of these families will require denser sampling at the familial level and is beyond the scope of this work.

Other sources of characters

The only laniatorean species in which we found different character states between legs I and II (character 2) are Aivina octomaculata (Agoristidae) and Poassa limbata (Nomoclastidae). Thus, it is possible that having a serial dimorphism in the degree of fusion of the three shafts (character 2) is a characteristic restricted to these families. Similarly, serial dimorphism has also been observed in the tarsal organ of spiders, in which a dimorphism in the shape of the sensilla of the tarsal organs of anterior and posterior legs has been suggested as a synapomorphy of the family Oonopidae (Platnick et al., 2012). A similar, but independent condition occurs in the Eupnoi Astrobunus grallator (Sclerosomatidae), in which legs I have the three sensilla clustered and legs II have isolated ones (Fig. 10). Interestingly, Wijnhoven (2013) reported three clustered sensilla (or ‘trident’) on the distalmost region of the last tarsomere I and last II have isolated ones (Fig. 10). Interestingly, Wijnhoven (2013) reported three clustered sensilla (or ‘trident’) on the distalmost region of the last tarsomere I and last segment of the pedipalps of Dicranopalpus ramosus (Phalangiidae). Therefore, it would be interesting to investigate if the same condition occurs in A. grallator and if it has any taxonomic value.

In summary, this sensory field on the sensory appendages is widespread in harvestmen and constitutes a promising source of information to be explored at several levels of phylogenetic relationships.

A widespread tarsal organ

Relatively few studies have been conducted on the sensory structures of harvestmen in comparison with most arachnid orders (Foelix, 1985; Willemart et al., 2009). Most of what is known about the function of specific sensillar types in harvestmen comes from studies in the suborder Laniatores, including data on the function of sensilla basiconica and the hooded sensillum (Willemart et al., 2009; Gainett et al., 2017b). Therefore, we base our discussion on the triad observed in this suborder. We show that the pair of sensilla basiconica and the hooded sensillum are phylogenetically conserved in Laniatores and with corresponding structures in Eupnoi, Dyspnoi and Cyphophthalmi. This conserved association suggests that they might be functionally linked, possibly operating as a sensory unit or organ. In Heteromitobates discolor (Laniatores, Gonyleptidae), the dendrites innervating the three shafts are concentrically arranged (Gainett et al., 2017b). The three shafts are inserted in a relatively thinner area of the dorsal cuticle and their inner parts occupy a considerable space of the distal third of the terminal tarsomeres of legs I and II, which is unusual when compared with the remaining tarsal sensilla. Moreover, in several species the three shafts share the same articulation membrane. Therefore, the widespread phylogenetic conservatism and morphological evidence of association suggest that they may function as a joint sensory organ at the tip of the sensory legs.

Ultrastructural data (H. discolor) supports a hygro-/thermoreceptive function for sensilla basiconica, although the function of the hooded sensillum remains unclear (hygro-/thermoreceptive and/or chemoreceptive), due to its unique ultrastructural characteristics, such as a double innervation of the shaft (suggesting a fusion of two sensilla into one shaft), two pore-like structures at the tip of the shaft and unusual meshed structure of the shaft wall (Gainett et al., 2017b). The complete slit opening of the sensilla basiconica has been argued to be related to the transduction mechanism involved in hygroreception (Gainett et al., 2017b). This feature is conserved in all Laniatores species studied, but is different in Eupnoi and Dyspnoi. Expanding knowledge of the distribution of this triad to the whole suborder Laniatores provides a unique opportunity for generalizing these functional differences for a large portion (two-thirds) of Opiliones species. Given the variations of the external morphology of the three sensilla in Eupnoi and Dyspnoi, and the occurrence of a single sensillum in Cyphophthalmi, it remains imperative to investigate ultrastructure in these suborders, both to test the homology scheme proposed here and to investigate if they are functionally similar to what has been observed in Laniatores.

A phylogenetically conserved cluster of sensilla on the distal tarsomeres of the legs have also been observed in other arachnid orders. These so called ‘tarsal organs’ have been reported in Araneae, Amblypygi, Scorpiones, Parasitiformes (Haller’s organ) and Ricinulei (pore organ) (Blumenthal, 1935; Foelix & Axtell, 1972; Foelix & Chu-Wang, 1973; Foelix et al., 1975; Foelix & Schabronath, 1983; Anton & Tichy, 1994; Tichy & Loftus, 1996; Talarico et al., 2005) (Table 1). In Parasitiformes, the Haller’s organ sensilla contain olfactory and hygro-/thermoreceptors (Foelix & Axtell, 1972; Hess & Vlimant, 1983; Hess & Loftus, 1984). In the spider Cupiennius salei Keyserling, 1877, tipped sensilla of the tarsal organ respond to humidity, temperature and chemical stimuli (Foelix & Chu-Wang, 1973; Ehn & Tichy, 1994). The tarsal organs of Ricinulei, Amblypygi and Scorpiones have never been studied with electrophysiology and their exact function is unclear, although ultrastructural data suggest at least an olfactory function in Ricinulei (Talarico et al., 2005).
2005). Some of these tarsal organs have been suggested as homologous structures due to their common position (dorsal region, distalmost tarsomere, close to the claw; Foelix et al., 1975; Foelix & Schabronath, 1983; Talarico et al., 2005). The various tarsal organs in arachnids occur on different leg pairs, have different shapes and may occur exposed or inside invaginated portions of cuticle (capsules). It is unclear whether tarsal organs in arachnids, including the triad here reported in Opiliones, are homologous structures that have undergone diversification in each order, or if they represent cases of convergence. Still, it is fascinating that several arachnid orders show conserved multifunctional association of sensilla on the distalmost part of the legs, which include the only confirmed or putative hygro-/thermoreceptors reported for Arachnida. Relatively little is known about hygro- and thermoreceptors in arachnids, apart from the studies with the tarsal organ of Araneae (Blumenthal, 1935; Anton & Tichy, 1994; Ehn & Tichy, 1994; Tichy & Loftus, 1996) and the Haller’s organ in Parasitiformes (e.g. Foelix & Axtell, 1972). Studying the previously known tarsal organs and the new structures here revealed on the sensory appendages of harvestmen may shed some light on the patterns of hygro- and thermoreceptor occurrence in arachnids and reveal if these sensillar associations on distal parts of the leg are functional convergences or derived from a common ancestry.

CONCLUSION

We show that a pair of sensilla basiconica and one hooded sensillum, putatively hygro-/thermoreceptive sensilla, are a phylogenetically widespread sensory field on the sensory appendages of laniatorean species, with comparable structures in all other suborders of Opiliones. These structures show variation in several levels of Opiliones phylogeny and constitute a promising source of diagnostic synapomorphies for the group. Further investigating the ultrastructure and physiological responses of these structures in different harvestman suborders is imperative for supporting their use as diagnostic characters, understanding their importance for the biology of Opiliones and testing hypotheses of structural homology.

ACKNOWLEDGEMENTS

This work was supported by FAPESP grant 2013/23189-1 and 2014/07671-0 to Guilherme...
Gainetti, FAPESP grant 2010/00915-0 and 2015/01518-9 to RHW, FAPESP grant 2013/50297-0 to RPR, National Science Foundation (NSF) grant DOB 1343578, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and NASA. Guilherme Gainetti acknowledges Enio Mattos, Phyllip Lenkaits (IB-USP), Adam Graham and Carolyn Marks (CNS-Harvard) for assistance with microscopy, Pedro Dias for assistance with Mesquite, members of the Laboratory of Sensory Biology and Behaviour of Arthropods (LESCA), Alípio Benedetti, Cristiano Sampaio, Jimmy Cabra and all members of Laboratório de Aracnólogos Legais (LAL) for helpful discussions. Alípio Benedetti kindly reviewed an earlier version of this manuscript. Three anonymous reviewers provided comments that improved an earlier version of this manuscript.

REFERENCES

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site.

File S1. Table of species used in this study, with taxonomy, collecting localities and museum accession numbers.

File S2. List of characteristics organized by characters and character states for the species investigated. Species sorted by family. Character states showed represent legs I and II, unless otherwise indicated. In these cases, the character state on the left indicates leg I and on the right indicates leg II. Species marked with an asterisk have missing information on legs I, and the character state observed on legs II was used in the analysis. Numbers 1, 2 and 3 on character (2) represent, respectively, the distal, middle and proximal sensilla. Parentheses indicate association.

File S3. Ancestral state reconstruction of “Character (2) Articulation membrane association” on the phylogenetic hypothesis of Gonyleptoidea after Pinto-da-Rocha, Giribet, et al. (personal communication) White: (2a) Distal, middle and proximal sensilla not fused. Green: (2b) Distal sensillum isolated, middle and proximal fused sensilla. Black: (2c) Distal, mid and proximal sensilla fused. Branches with more than one color represent equally parsimonious reconstructions.

File S4. Pages 2–4: Ancestral state reconstructions of characters 1–4, respectively, under maximum likelihood using a one-parameter Markov model, as implemented in Mesquite ver. 3.31 (Maddison & Maddison, 2011). Reconstructions yield results identical to those under equal weights parsimony (see main text). Pages 5–9: Four charts of the null distribution of tree lengths resulting from the permutation tail probability (PTP) analysis (Faith & Cranston, 1991) for characters 1–4, respectively, using the software Mesquite ver. 3.31 (Maddison & Maddison, 2011) with 500 reshuffling cycles.