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ABSTRACT Here, we report the draft genome and annotation of “Candidatus Nardonella
dryophthoridicola” strain NARMHE1, obtained via Oxford Nanopore sequencing of the ovaries
of its host, the weevil Metamasius hemipterus, from a population from southeast Brazil.

M etamasius (family, Curculionidae; subfamily, Dryophthorinae) harbors obligate endo-
symbiont Nardonella, a group of Gammaproteobacteria that have cospeciated with

their hosts (1–3). Metamasius hemipterus is a pest on sugarcane and other crops and has
invasive potential, threatening agriculture (4–7). However, genomic sampling of Nardonella
remains limited, particularly for host species that exhibit invasive potential. Here, we generate
the genome of the Nardonella associated with M. hemipterus, found on cultivated Bactris
gasipaes (Arecaceae).

M. hemipterus adults were collected (Pariquera-açu, São Paulo, Brazil; 224.608873,
247.896800) using scent bait traps (8). Larvae were extracted from stems and fixed
in ethanol. To detect Nardonella presence, 15 females were dissected, and their midg-
uts and ovaries were separated. We also dissected gut tissues of 15 larvae. Samples
were immersed in 2% bleach for 60 s and dissected in 1� phosphate-buffered saline
(PBS). DNA extractions were performed using Qiagen DNeasy blood and tissue kit
following the manufacturer’s protocol with modifications (overnight proteinase K
incubation, two double-distilled water [ddH2O; 56°C] elutions, and 10 min final incu-
bation). The DNA concentration was verified with Qubit double-stranded DNA
(dsDNA) high-sensitivity (HS) assay kit (Life Technologies). Samples were prepared
according to Celero PCR workflow with enzymatic fragmentation (Tecan Genomics).
The quality and quantity of the finished libraries were assessed with Agilent
TapeStation (Agilent) and Qubit dsDNA HS assay kit. Sequencing was performed
using Illumina NovaSeq6000 (2�150 bp).

Raw reads (host and symbiont) were queried in BLASTn (9, 10) to identify sequences of
Nardonella against the NCBI genome database (E value cutoff, 1026; see supplemental informa-
tion for program options). Sequences of interest were extracted using Seqtk1.3 (https://github
.com/lh3/seqtk). Ovaries presented 5� more Nardonella sequences (Fig. 1A) and were selected
for sequencing using Oxford Nanopore Technologies. No shearing/fragmentation was per-
formed on input DNA (LSK110 kits were used for library preparation and run on two GridION-
MinION flow cells; high-accuracy base calling min_qscore was 9). Long reads were processed
using the same filtering procedures described for Illumina (Table 1). Long reads were dedupli-
cated with BBMap version 38.94 (https://sourceforge.net/projects/bbmap/); sequences shorter
than 130 bp were removed with Filtlong version 0.2.0.1 (https://github.com/rrwick/Filtlong).
The 30,930-bp-long reads were assembled twice independently using Canu version 2.2 (11)
and Flye version 2.8.3 (12). Final contigs for each assembly were corrected using unfiltered
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long reads with Medaka version 1.6.0 (https://github.com/nanoporetech/medaka). Additional
polishing using short reads was made with Polypolish version 0.4.3 (13), with a further long-read
polishing made with poLCA version 4.0.6 (14). To improve contiguity, we used quickmerge ver-
sion 0.3 (15). The final assembly was composed of seven contigs (Table 1). Scaffolding was per-
formed using homology between contigs and reference genomes. Potential misassembles
were corrected with RagTag version 2.1.0 (https://github.com/malonge/RagTag). After correc-
tion, we used reference protein sequences of the Rhynchophorus ferrugineus endosymbiont,
GenBank accession no. AP018161, to orient contigs. Stretches of 100 “Ns”were placed between
adjacent sequences to indicate gap regions. The final genome was annotated using PGAP ver-
sion 6.0 (16) (Table 1). Although some genes are incomplete, there was high similarity of genetic
composition to other Nardonella genomes (Fig. 1B). To ascertain identification, we aligned our
contigs to other Nardonella genomes with Mauve version 2.4.0 (17). A maximum-likelihood (ML)
tree was inferred with RAxML version 8.2.11 (18) (GTR1gamma; 1,000 bootstraps). NARMHE1
formed a strongly supported clade with other Dryophthorinae endosymbionts (Fig. 1C). The
positioning of Nardonella strains on the phylogeny emulates their dryophthorid hosts (19), sug-
gesting a coevolutionary process (20).

Data availability. All code and software parameters used to produce the results, as
well as ONT quality control reports and phylogenetic matrix, are described in the supplemen-
tal material publicly available on GitHub repository Nardonella-NARMHE1-genome (https://
github.com/LucPalmieri/Nardonella-NARMHE1-genome). The genome version described in
this paper is the first version, and it is under GenBank accession no. JAKMAI010000000. Raw

FIG 1 “Candidatus Nardonella dryophthoridicola” strain NARMHE1 draft genome assembly. (A) Determination of the most suitable tissue for recovering symbiont
sequences. (B) Synteny circus plot showing rearrangement of some relevant genes on resulting draft genome compared with other Dryophthorinae endosymbiont
Nardonella genomes. (C) Maximum-likelihood tree constructed on RAxML with all available Nardonella genomes. GenBank accession numbers of the sequences used
are AP018159, endosymbiont of Euscepes postfasciatus; AP018160, endosymbiont of Pachyrhynchus infernalis; AP018161, endosymbiont of Rhynchophorus ferrugineus;
AP018162, endosymbiont of Sipalinus gigas; CP069383, “Candidatus Nardonella dryophthoridicola”; and JAKMAI010000000, endosymbiont of Metamasius hemipterus
(this study).

Announcement Microbiology Resource Announcements

November 2022 Volume 11 Issue 11 10.1128/mra.00738-22 2

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

ra
 o

n 
17

 N
ov

em
be

r 
20

22
 b

y 
72

.3
3.

2.
16

1.

https://github.com/nanoporetech/medaka
https://github.com/malonge/RagTag
https://www.ncbi.nlm.nih.gov/nuccore/AP018161
https://github.com/LucPalmieri/Nardonella-NARMHE1-genome
https://github.com/LucPalmieri/Nardonella-NARMHE1-genome
https://www.ncbi.nlm.nih.gov/nuccore/JAKMAI010000000
https://www.ncbi.nlm.nih.gov/nuccore/AP018159
https://www.ncbi.nlm.nih.gov/nuccore/AP018160
https://www.ncbi.nlm.nih.gov/nuccore/AP018161
https://www.ncbi.nlm.nih.gov/nuccore/AP018162
https://www.ncbi.nlm.nih.gov/nuccore/CP069383
https://www.ncbi.nlm.nih.gov/nuccore/JAKMAI010000000
https://journals.asm.org/journal/mra
https://doi.org/10.1128/mra.00738-22


Illumina and Nanopore sequences are available on NCBI Sequence Read Archive under the
accession numbers SRR21424116 and SRR20324089, respectively.
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